In hypertrophic scars, the differentiation and migration of fibroblasts are influenced by the extracellular matrix microenvironment, which includes factors such as stiffness, restraint, and tensile force. These mechanical stresses incite alterations in cell behavior, accompanied by cytoskeletal protein reorganization. However, the role of nucleo-skeletal proteins in this context remains underexplored. In this study, we use a polyacrylamide hydrogel (PAA) to simulate the mechanical stress experienced by cells in scar tissue and investigate the impact of Emerin on cell behavior. We utilize atomic force microscopy (AFM) and RNA interference technology to analyze cell differentiation, migration, and stiffness. Our findings reveal that rigid substrates and cellular restriction elevate Emerin expression and diminish differentiation. Conversely, reducing Emerin expression leads to attenuated cell differentiation, where stiffness and constraining factors exert no notable influence. Furthermore, a softening of cells and an enhanced migration rate are also markedly observed. These observations indicate that variations in nuclear skeletal proteins, prompted by diverse matrix microenvironments, play a pivotal role in the pathogenesis of hypertrophic scars (HSs). This research offers novel insights and a reference point for understanding scar fibrosis formation mechanisms and preventing fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532208PMC
http://dx.doi.org/10.3724/abbs.2024094DOI Listing

Publication Analysis

Top Keywords

differentiation migration
12
hypertrophic scars
8
cell behavior
8
cell differentiation
8
emerin expression
8
differentiation
5
role emerin
4
emerin regulating
4
regulating fibroblast
4
fibroblast differentiation
4

Similar Publications

Dura immunity configures leptomeningeal metastasis immunosuppression for cerebrospinal fluid barrier invasion.

Nat Cancer

December 2024

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The cerebrospinal fluid (CSF) border accommodates diverse immune cells that permit peripheral cell immunosurveillance. However, the intricate interactions between CSF immune cells and infiltrating cancer cells remain poorly understood. Here we use fate mapping, longitudinal time-lapse imaging and multiomics technologies to investigate the precise origin, cellular crosstalk and molecular landscape of macrophages that contribute to leptomeningeal metastasis (LM) progression.

View Article and Find Full Text PDF

Background: Age-related macular degeneration (AMD), is a neurodegenerative ocular disease. This study investigated the role of ferroptosis-related genes and their interaction with immune cell infiltration in AMD.

Methods: We screened differential expression genes (DEGs) of AMD from data sets in Gene Expression Omnibus.

View Article and Find Full Text PDF

Sodium ferulate attenuates ischaemic stroke by mediating the upregulation of thrombospondin-4 expression and combined treatment with bone marrow mesenchymal stem cells.

Exp Neurol

December 2024

Department of Encephalopathy, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518000, China; Department of Encephalopathy, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, Guangdong 518000, China. Electronic address:

Ischaemic stroke is one of the major diseases affecting human health, involving complex and diverse pathological mechanisms, including inflammatory response, oxidative stress and angiogenesis. Sodium ferulate (SF) exerts a protective effect on cerebral ischaemia/reperfusion and when combined with bone marrow mesenchymal stem cells (BMSCs), has a considerable therapeutic effect on brain injury in rats. Here, we speculate that SF also exerts cerebroprotective effects.

View Article and Find Full Text PDF

SHIP-1 regulates the differentiation and function of Tregs via inhibiting mTORC1 activity.

Cell Mol Life Sci

December 2024

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Cell metabolism is crucial for orchestrating the differentiation and function of regulatory T cells (Tregs). However, the underlying mechanism that coordinates cell metabolism to regulate Treg activity is not completely understood. As a pivotal molecule in lipid metabolism, the role of SHIP-1 in Tregs remains unknown.

View Article and Find Full Text PDF

Catalogue of inherited autosomal recessive disorders found amongst the Roma population of Europe.

Eur J Med Genet

December 2024

Department of Clinical Genetics, Our Lady's Children's Hospital, Children's' Health Ireland, Dublin, Republic of Ireland; Academic Centre on Rare Diseases, University College Dublin, Dublin, Republic of Ireland; National Centre for Inherited Metabolic Disorders, Children's Health Ireland, Temple Street Dublin, Republic of Ireland. Electronic address:

Background: The Roma population are an endogamous, genetically isolated, minority population who migrated from North-Western India to Europe from the 10 Century throughout the Byzantine period and continues to the present day. Approximately 10-12 million Romani people reside in segregated settlements in Europe, and smaller populations live in North America and China. In addition to the endogamy, they also practice consanguinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!