Nitrate electroreduction to ammonia catalysed by atomically precise AuCu clusters.

Chem Commun (Camb)

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.

Published: July 2024

A novel bimetal cluster [AuCu(SR)](PPh) (SR = 2,4-dichlorothiophenol) has been successfully synthesized, which can be viewed as a Au@Au core and four trimeric Cu(SR) staples. Compared to monometallic Au(TBBT) and Cu(CHT)(PPh) clusters, the [AuCu(CHClS)](PPh) cluster has much higher catalytic efficiency for nitrate electroreduction to ammonia.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc02085eDOI Listing

Publication Analysis

Top Keywords

nitrate electroreduction
8
electroreduction ammonia
8
ammonia catalysed
4
catalysed atomically
4
atomically precise
4
precise aucu
4
aucu clusters
4
clusters novel
4
novel bimetal
4
bimetal cluster
4

Similar Publications

Electrocatalysts alter their structure and composition during reaction, which can in turn create new active/selective phases. Identifying these changes is crucial for determining how morphology controls catalytic properties but the mechanisms by which operating conditions shape the catalyst's working state are not yet fully understood. In this study, we show using correlated operando microscopy and spectroscopy that as well-defined CuO cubes evolve under electrochemical nitrate reduction reaction conditions, distinct catalyst motifs are formed depending on the applied potential and the chemical environment.

View Article and Find Full Text PDF

Tuning the Acid Hardness Nature of Cu Catalyst for Selective Nitrate-to-Ammonia Electroreduction.

Angew Chem Int Ed Engl

January 2025

Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.

Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.

View Article and Find Full Text PDF

Highly Accessible Electrocatalyst with Formed Copper-Cluster Active Sites for Enhanced Nitrate-to-Ammonia Conversion.

ACS Nano

January 2025

Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.

View Article and Find Full Text PDF

Construction of a Heterostructured Alloy-Molybdenum Nitride Catalyst for Enhanced NH Production via Nitrate Electrolysis.

Inorg Chem

January 2025

Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China.

Here, we reported a highly efficient nitrate electroreduction (NORR) electrocatalyst that integrated alloying and heterostructuring strategies comprising FeCo alloy and MoN (FeCo-MoN/NC). Notably, the maximum NH Faraday efficiency (FE) of 83.24%, NH yield of 12.

View Article and Find Full Text PDF

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

Adv Mater

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!