Background: The biomechanical environment created by suture-button fixation Latarjet is conducive to the healing and shaping of the transplanted coracoid, but its mechanism remains unclear. The latest research has found that the absence of stem cell chemokine (CXCL12) impeded bone regeneration in Sonic Hedgehog (SHH)-deficient animals. However, whether the biomechanical environment affects SHH and CXCL12 function has not been studied.

Methods: Rat fracture models were constructed to simulate stress environments under non-load-bearing and load-bearing conditions. The fracture healing and shaping, as well as the expression levels of SHH and CXCL12, were assessed through gross viewing, micro-computed tomography (micro-CT), and histochemical staining.

Results: Under flexible fixation, the relative bone volume (BV/TV) of rats exposed to the load-bearing stress environment was significantly higher than that of rats under a non-load-bearing stress environment (p ≤ 0.05). Adverse bone shaping was not observed in rats subjected to flexible fixation. The levels of SHH and CXCL12 in load-bearing rats exhibited significant elevation (p ≤ 0.05). Under a load-bearing stress environment, no significant difference was observed in the BV/TV between the flexible fixation group and the rigid fixation group (p ≥ 0.05), but there was excessive hyperplasia of the fracture callus in the rigid fixation group. The levels of SHH and CXCL12 in rats subjected to rigid fixation were significantly elevated (p ≤ 0.05).

Conclusions: Flexible fixation and load-bearing stress environment may contribute to bone healing and shaping by influencing the levels of SHH and CXCL12, suggested that this mechanism may be relevant to the healing and shaping of the transplanted coracoid after suture-button fixation Latarjet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680484PMC
http://dx.doi.org/10.1002/ame2.12448DOI Listing

Publication Analysis

Top Keywords

flexible fixation
20
stress environment
20
healing shaping
20
shh cxcl12
20
load-bearing stress
16
levels shh
16
fixation group
12
rigid fixation
12
fixation
10
fixation load-bearing
8

Similar Publications

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.

View Article and Find Full Text PDF

The vestibular system is vital for maintaining stable vision during daily activities. When peripheral vestibular input is lost, patients initially experience impaired gaze stability due to reduced effectiveness of the vestibular-ocular-reflex pathway. To aid rehabilitation, patients are often prescribed gaze-stabilization exercises during which they make self-initiated active head movements.

View Article and Find Full Text PDF

Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis.

Molecules

December 2024

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Metal-organic frameworks (MOFs) represent a category of crystalline materials formed by the combination of metal ions or clusters with organic linkers, which have emerged as a prominent research focus in the field of photocatalysis. Owing to their distinctive characteristics, including structural diversity and configurations, significant porosity, and an extensive specific surface area, they provide a flexible foundation for various potential applications in photocatalysis. In recent years, researchers have tackled many issues in the MOF-based photocatalytic yield.

View Article and Find Full Text PDF

: Spinal flexibility radiographs are important in adolescent idiopathic scoliosis (AIS) for clinical decision-making. In this study, we introduce a new method, the 'quantitatively controlled standing fulcrum side-bending' test (CSFS test). This is a feasibility study; we aimed to quantify the applied force and track the temporospatial changes in the spine specifically by measuring the continuous change in the Cobb angle (in degrees) during lateral bending.

View Article and Find Full Text PDF

Adult spinal deformity (ASD) with osteoporotic vertebral fractures (OVF) often requires vertebral body resection and replacement. However, postoperative mechanical complications (MC) have been unsolved issues. This study retrospectively investigated the risk of MC following anterior-posterior spinal fusion (APF) with vertebral body resection and replacement for OVF with ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!