Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water has been recognized in promoting material removal, traditionally ascribed to friction reduction and thermal dissipation. However, the physicochemical interactions between water and the workpiece have often been overlooked. This work sheds light on how the physicochemical interactions that occur between water (HO) and copper (Cu) workpiece influence material deformations during the cutting process. ReaxFF molecular dynamics simulations were employed as the primary method to study the atomistic physical and chemical interactions between the applied medium and the workpiece. Upon contact with the Cu surface, HO dissociated into OH ions, H ions, and traces of O ions. The OH and O ions chemically reacted with Cu to form bonds that weakened the Cu-Cu bonds by elongation, while the H ions gained electrons and diffused into the Cu lattice as H ions. The weakening of surface Cu bonds promoted plastic deformation and reduced the difficulty of material removal. Meanwhile, further addition of HO molecules saw a plateau in hydrolysis and more dominance of HO physical adsorption on Cu, which weakens the elongation of Cu-Cu bonds. While the ideal case for atomic-scale material removal was found with an optimal number of 240 HO molecules, the presented Cu material state with more HO molecules could account for the observations in microcutting. The constricted nature of physical adsorption and hydrogen ion diffusion in the surface layer prevented the propagation of dislocations through the surface, which subsequently caused pinning points to be closer together during chip formation as observed by smaller chip fold widths on the microscale. Theoretical and experimental analysis identified the importance of accounting for physicochemical interactions between surface media and the workpiece when considering material deformations at micronanoscale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c04728 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!