The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, , with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies. The flexible 3D molecular architecture of , along with its densely packed superstructures in the presence of fullerenes, is revealed by microcrystal electron diffraction and single-crystal X-ray diffraction, which establish the coexistence of both propeller and tweezer conformations in the solid state. exhibits strong binding affinities for fullerenes, leading to host-guest complexes that display rapid photoinduced electron transfer within a picosecond. The outcomes of this research could pave the way for the utilization of shape and electronically complementary nanocarbons in the construction of functional coassemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c05189DOI Listing

Publication Analysis

Top Keywords

three-dimensional nanocarbon
8
geometrically flexible
4
flexible three-dimensional
4
nanocarbon development
4
development architecturally
4
architecturally unique
4
unique molecular
4
molecular nanocarbons
4
nanocarbons bottom-up
4
bottom-up organic
4

Similar Publications

The construction of three-dimensional nanocarbon structures with well-defined molecular dynamics is a challenging yet rewarding task in material science and supramolecular chemistry. Herein, we report the synthesis of two highly defective, nitrogen-doped molecular cylinders, namely MC1 and MC2, with a length of 1.4 nm and 2.

View Article and Find Full Text PDF

Highly flexible hydrogels are widely used in fields such as agriculture, drug delivery, and tissue engineering. However, the simultaneous integration of excellent mechanical properties, swelling properties, and high electrical conductivity into a hydrogel is still a great challenge. This work introduces 1D tubular multi-walled carbon nanotubes (MWCNTs) and 2D layered graphene oxide (GO) into polyacrylamide/poly-acrylic acid (PAM/PAA) hydrogels.

View Article and Find Full Text PDF

Nondestructive flash cathode recycling.

Nat Commun

July 2024

Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA.

Effective recycling of end-of-life Li-ion batteries (LIBs) is essential due to continuous accumulation of battery waste and gradual depletion of battery metal resources. The present closed-loop solutions include destructive conversion to metal compounds, by destroying the entire three-dimensional morphology of the cathode through continuous thermal treatment or harsh wet extraction methods, and direct regeneration by lithium replenishment. Here, we report a solvent- and water-free flash Joule heating (FJH) method combined with magnetic separation to restore fresh cathodes from waste cathodes, followed by solid-state relithiation.

View Article and Find Full Text PDF

The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, , with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies.

View Article and Find Full Text PDF

Lignin organic molecule aggregate derived turbine-like nanocarbon with high nitrogen doping for potassium ion hybrid capacitors.

J Colloid Interface Sci

August 2024

School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Shaoxing Research Institute of Renewable Energy and Molecular Engineering, Shanghai Jiao Tong University, Shaoxing, 312000, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Potassium-ion hybrid capacitors (PIHCs) represent a burgeoning class of electrochemical energy storage devices characterized by their remarkable energy and power densities. Utilizing amorphous carbon derived from sustainable biomass presents an economical and environmentally friendly option for anode material in high-rate potassium-ion storage applications. Nevertheless, the potassium-ion storage capacity of most biomass-derived carbon materials remains modest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!