The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, , with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies. The flexible 3D molecular architecture of , along with its densely packed superstructures in the presence of fullerenes, is revealed by microcrystal electron diffraction and single-crystal X-ray diffraction, which establish the coexistence of both propeller and tweezer conformations in the solid state. exhibits strong binding affinities for fullerenes, leading to host-guest complexes that display rapid photoinduced electron transfer within a picosecond. The outcomes of this research could pave the way for the utilization of shape and electronically complementary nanocarbons in the construction of functional coassemblies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c05189 | DOI Listing |
Chem Sci
October 2024
Institute of Molecular Plus, Department of Chemistry, Tianjin University and Haihe Laboratory of Sustainable Chemical Transformations 92 Weijin Road Tianjin 300072 China
The construction of three-dimensional nanocarbon structures with well-defined molecular dynamics is a challenging yet rewarding task in material science and supramolecular chemistry. Herein, we report the synthesis of two highly defective, nitrogen-doped molecular cylinders, namely MC1 and MC2, with a length of 1.4 nm and 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Ningbo Hantech Medical Device CO., LTD, Ningbo 315326, China.
Highly flexible hydrogels are widely used in fields such as agriculture, drug delivery, and tissue engineering. However, the simultaneous integration of excellent mechanical properties, swelling properties, and high electrical conductivity into a hydrogel is still a great challenge. This work introduces 1D tubular multi-walled carbon nanotubes (MWCNTs) and 2D layered graphene oxide (GO) into polyacrylamide/poly-acrylic acid (PAM/PAA) hydrogels.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
Effective recycling of end-of-life Li-ion batteries (LIBs) is essential due to continuous accumulation of battery waste and gradual depletion of battery metal resources. The present closed-loop solutions include destructive conversion to metal compounds, by destroying the entire three-dimensional morphology of the cathode through continuous thermal treatment or harsh wet extraction methods, and direct regeneration by lithium replenishment. Here, we report a solvent- and water-free flash Joule heating (FJH) method combined with magnetic separation to restore fresh cathodes from waste cathodes, followed by solid-state relithiation.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China.
The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, , with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2024
School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Shaoxing Research Institute of Renewable Energy and Molecular Engineering, Shanghai Jiao Tong University, Shaoxing, 312000, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Potassium-ion hybrid capacitors (PIHCs) represent a burgeoning class of electrochemical energy storage devices characterized by their remarkable energy and power densities. Utilizing amorphous carbon derived from sustainable biomass presents an economical and environmentally friendly option for anode material in high-rate potassium-ion storage applications. Nevertheless, the potassium-ion storage capacity of most biomass-derived carbon materials remains modest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!