Treatment of Knee Chondral Defects in Athletes.

Sports Med Arthrosc Rev

Department of Orthopaedic Surgery, Sports Medicine Institute, Hospital for Special Surgery, New York, NY.

Published: June 2024

AI Article Synopsis

  • Cartilage lesions in the knee, common among active individuals and athletes, can result from both chronic stress and acute injuries, leading to significant pain and time away from sports.
  • Diagnosis involves a detailed history, physical examination, and MRI imaging to assess the lesions and surrounding joint condition.
  • Treatment options range from conservative care to surgical interventions, with most cases needing surgery due to the limited healing ability of cartilage, emphasizing the importance of teamwork among the athlete, surgeon, and medical staff for a successful recovery.

Article Abstract

Cartilage lesions of the knee are a challenging problem, especially for active individuals and athletes who desire a return to high-load activities. They occur both through chronic repetitive loading of the knee joint or through acute traumatic injury and represent a major cause of pain and time lost from sport. They can arise as isolated lesions or in association with concomitant knee pathology. Management of these defects ultimately requires a sound understanding of their pathophysiologic underpinnings to help guide treatment. Team physicians should maintain a high index of suspicion for underlying cartilage lesions in any patient presenting with a knee effusion, whether painful or not. A thorough workup should include a complete history and physical examination. MRI is the most sensitive and specific imaging modality to assess these lesions and can provide intricate detail not only of the structure and composition of cartilage, but also of the surrounding physiological environment in the joint. Treatment of these lesions consists of both conservative or supportive measures, as well as surgical interventions designed to restore or regenerate healthy cartilage. Because of the poor inherent capacity for healing associated with hyaline cartilage, the vast majority of symptomatic lesions will ultimately require surgery. Surgical treatment options range from simple arthroscopic debridement to large osteochondral reconstructions. Operative decision-making is based on numerous patient- and defect-related factors and requires open lines of communication between the athlete, the surgeon, and the rest of the treatment team. Ultimately, a positive outcome is based on the creation of a durable, resistant repair that allows the athlete to return to pain-free sporting activities.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JSA.0000000000000405DOI Listing

Publication Analysis

Top Keywords

cartilage lesions
8
treatment team
8
lesions
6
treatment
5
cartilage
5
treatment knee
4
knee chondral
4
chondral defects
4
defects athletes
4
athletes cartilage
4

Similar Publications

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease which afflicts about nearly 1% of global population. RA results in synovitis and cartilage/bone damage, even disability which aggravates the health burden. Many drugs are used to relieve RA, such as glucocorticoids (GCs), non-steroidal anti-inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic drugs (DMARDs) in the clinical treatment.

View Article and Find Full Text PDF

Subchondral insufficiency fracture of the knee.

Orthopadie (Heidelb)

January 2025

Department of Orthopedic Surgery, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.

Subchondral insufficiency fractures of the knee (SIFK) are a relatively common cause of knee pain, particularly in middle-aged and older adults. The SIFK is a type of stress fracture that occurs when excessive and repetitive or supraphysiologic loads are applied to subchondral bone [1]. Historically, this type of fracture was termed spontaneous osteonecrosis of the knee (SONK) until advances in MRI identified underlying fractures as well as meniscal deficiency as likely attributable etiologies.

View Article and Find Full Text PDF

Introduction: Despite the good clinical outcomes of osteochondral autograft transplantation (OAT), reports of re-arthroscopic findings after OAT have been limited to short-term, and there are no reports of findings after long-term follow-up. This is the first report that describes re-arthroscopic findings long-term after OAT.

Case Report: A male patient underwent OAT on the lateral femoral condyle (LFC) of the knee and lateral meniscus (LM) repair at the age of 45.

View Article and Find Full Text PDF

Finite element investigation for improving chest wall reconstruction process using ceramic and polymeric implants.

Sci Rep

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.

View Article and Find Full Text PDF

Background And Purpose:  In contemporary medial unicompartmental knee arthroplasty (mUKA), non-lateral patellofemoral osteoarthritis (PFOA) is not considered a contraindication. However, we still lack knowledge on the association of PFOA severity on patient reported outcome measures (PROMs) after mUKA. We aimed to examine the association between PFOA severity and PROM-score changes after mUKA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!