LCP1 correlates with immune infiltration: a prognostic marker for triple-negative breast cancer.

BMC Immunol

Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.

Published: July 2024

Objective: Triple-Negative Breast Cancer (TNBC) is known for its aggressiveness and treatment challenges due to the absence of ER, PR, and HER2 receptors. Our work emphasizes the prognostic value of LCP1 (Lymphocyte cytosolic protein 1), which plays a crucial role in cell processes and immune cell activity, to predict outcomes and guide treatments in TNBC.

Methods: We explored LCP1 as a potential biomarker in TNBC and investigated the mRNA and protein expression levels of LCP1. We investigated different databases, including GTEX, TCGA, GEO, cBioPortal and Kaplan-Meier Plotter. Immunohistochemistry on TNBC and benign tumor samples was performed to examine LCP1's relationship with patient clinical characteristics and macrophage markers. We also assessed survival rates, immune cell infiltration, and drug sensitivity related to LCP1 using various bioinformatics tools.

Results: The results indicated that LCP1 expression was higher in TNBC tissues compared to adjacent normal tissues. However, high expression of LCP1 was significantly associated with favorable survival outcomes in patients with TNBC. Enrichment analysis revealed that genes co-expressed with LCP1 were significantly enriched in various immune processes. LCP1 showed a positive correlation with the infiltration of resting dendritic cells, M1 macrophages, and memory CD4 T cells, and a negative correlation with M2 macrophages. Further analysis suggested a link between high levels of LCP1 and increased survival outcomes in cancer patients receiving immunotherapy.

Conclusion: LCP1 may serve as a potential diagnostic and prognostic biomarker for TNBC, which was closely associated with immune cell infiltration, particularly M1 and M2 macrophages. Our findings may provide valuable insights into immunotherapeutic strategies for TNBC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229261PMC
http://dx.doi.org/10.1186/s12865-024-00635-xDOI Listing

Publication Analysis

Top Keywords

immune cell
12
lcp1
11
triple-negative breast
8
breast cancer
8
biomarker tnbc
8
levels lcp1
8
cell infiltration
8
survival outcomes
8
tnbc
7
immune
5

Similar Publications

The first evidence that Orthopoxvirus induced the expansion and the recall of effector innate Vδ2T-cells was described in a macaque model. Although, an engagement of αβ T-cells specific response in patients infected with human monkeypox (Mpox) was demonstrated, little is known about the role of γδ T-cells during Mpox infection. IFN-γ-producing γδ T-cells in the resistance to poxviruses may a key role in inducing a protective type 1 memory immunity.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it.

View Article and Find Full Text PDF

This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!