A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural network-based algorithm for door handle recognition using RGBD cameras. | LitMetric

The ability to recognize and interact with a variety of doorknob designs is an important component on the path to true robot adaptability, allowing robotic systems to effectively interact with a variety of environments and objects The problem addressed in this paper is to develop and implement a method for recognizing the position of a door handle by a robot using data from an RGBD camera. To achieve this goal, we propose a revolutionary approach designed for autonomous robots that allows them to identify and manipulate door handles in different environments using data obtained from RGBD cameras. This was achieved by creating and annotating a complete dataset consisting of 5000 images of door handles from different angles, with the coordinates of the vertices of the bounding rectangles labeled. The architectural basis of the proposed approach is based on MobileNetV2, combined with a special decoder that optimally increases the resolution to 448 pixels. A new activation function specially designed for this neural network is implemented to ensure increased accuracy and efficiency of raw data processing. The most important achievement of this study is the model's ability to work in real-time, processing up to 16 images per second. This research paves the way for new advancements in the fields of robotics and computer vision, making a substantial contribution to the practical deployment of autonomous robots in a myriad of life's spheres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231249PMC
http://dx.doi.org/10.1038/s41598-024-66864-7DOI Listing

Publication Analysis

Top Keywords

door handle
8
rgbd cameras
8
interact variety
8
data rgbd
8
autonomous robots
8
door handles
8
neural network-based
4
network-based algorithm
4
door
4
algorithm door
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!