Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231358 | PMC |
http://dx.doi.org/10.1038/s42003-024-06530-w | DOI Listing |
AMB Express
January 2025
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Yibin Academy of Southwest University, Yibin 644000, China. Electronic address:
Compared with traditional biological control, the co-use of entomopathogenic fungi and multiple enemies has made great progress in biocontrol technology. However, the risk posed by entomopathogenic fungi to their host has not been fully evaluated. Further, the interaction between them has not described adequately.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Institute of Molecular Biotechnology (IMBT), BOKU University, Vienna, Austria.
Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:
Butanol is a more desirable second-generation biomass energy source. Acetone-butanol-ethanol (ABE) fermentation using Clostridium spp. is a promising method for butanol production.
View Article and Find Full Text PDFESMO Open
January 2025
Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:
Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!