A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of electromigration on microstructure and properties of CeO nanopartical-reinforced Sn58Bi/Cu solder joints. | LitMetric

To mitigate the decrease in mechanical performance of Sn58Bi/Cu solder joints resulting from electromigration-induced damage. The CeO nanoparticles were incorporated into Sn58Bi solder by a melt-casting method, and their effects on the microstructure and properties of Sn58Bi/Cu solder joints under electromigration were investigated. The study results demonstrate that the addition of 0.125 ~ 0.5 wt% CeO nanoparticles refines the eutectic microstructure of Sn58Bi solder alloy. At an addition amount of 0.5 wt%, the composite solder alloy exhibits the maximum tensile strength of 68.9 MPa, which is 37% higher than that of the base solder. CeO nanoparticle-reinforced Sn58Bi solder can achieve excellent solderbility with Cu substrates and the joints can significantly inhibit the growth of the anodic Bi-rich layer, which is responsible for electromigration. With the extension of current stressing time, Bi-rich and Sn-rich layer are respectively formed on the anode and cathode in the joints. The intermetallic compound (IMC) layer grows asymmetrically, transitioning from a fan-shaped morphology to a flattened structure at the anode and to a thickened mountain-like morphology at the cathode. Adding the CeO nanoparticles helps to mitigate the decrease in mechanical performance caused by electromigration damage during current application to some extent. Over the current stressing period of 288 ~ 480 h, the fracture position shifts from the anodic IMC/Bi-rich interface to the cathodic Sn-rich/IMC interface. The fracture mechanism transitions from a brittle fracture characterized by plate-like cleavage to a ductile-brittle mixed fracture with fine dimples and cleavage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231283PMC
http://dx.doi.org/10.1038/s41598-024-66681-yDOI Listing

Publication Analysis

Top Keywords

sn58bi/cu solder
12
solder joints
12
ceo nanoparticles
12
sn58bi solder
12
microstructure properties
8
solder
8
mitigate decrease
8
decrease mechanical
8
mechanical performance
8
solder alloy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!