A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers. | LitMetric

Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers.

Nat Commun

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.

Published: July 2024

Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm over 1000 h with a negligible decay rate of 9.67 μV h.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231348PMC
http://dx.doi.org/10.1038/s41467-024-50117-2DOI Listing

Publication Analysis

Top Keywords

current density
12
efficient alkaline
8
alkaline hydrogen
8
hydrogen evolution
8
anion exchange
8
exchange membrane
8
aem water
8
water electrolysis
8
non-precious metal
8
metal electrocatalysts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!