Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding, enabling 1.77 dB m loss and 14.9 million Q for 80 nm nitride core waveguides, more than half an order magnitude lower loss than previously reported sub 300 °C process. For 800 nm-thick nitride, we achieve as good as 8.66 dB m loss and 4.03 million Q, the highest reported Q for a low temperature processed resonator with equivalent device area, with a median of loss and Q of 13.9 dB m and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity, and using a thick nitride micro-resonator we demonstrate OPO, over two octave supercontinuum generation, and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231177PMC
http://dx.doi.org/10.1038/s41377-024-01503-4DOI Listing

Publication Analysis

Top Keywords

silicon nitride
20
nitride
12
ultra-low loss
8
loss silicon
8
nitride integrated
8
integrated photonics
8
low-temperature materials
8
thin thick
8
thick waveguides
8
order magnitude
8

Similar Publications

In situ electrochemical liquid phase transmission electron microscopy (LP-TEM) measurements utilize micro-chip three-electrode cells with electron transparent silicon nitride windows that confine the liquid electrolyte. By imaging electrocatalysts deposited on micro-patterned electrodes, LP-TEM provides insight into morphological, phase structure, and compositional changes within electrocatalyst materials under electrochemical reaction conditions, which have practical implications on activity, selectivity, and durability. Despite LP-TEM capabilities becoming more accessible, in situ measurements under electrochemical reaction conditions remain non-trivial, with challenges including electron beam interactions with the electrolyte and electrode, the lack of well-defined experimental workflows, and difficulty interpreting particle behavior within a liquid.

View Article and Find Full Text PDF

Azo-PMA nanopores of sub-20 nm length for unimolecular resolution of nucleic acids and proteins.

Talanta

December 2024

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Owing to the facile fabrication and surface modification, the cost-effective polymer nanopores are widely employed in unimolecular determination of biomacromolecules and selective sensing of small molecules, nanoparticles and biomarkers. However, the documented polymer nanochannels are generally microscale in length with low spatial resolution. We herein synthesized azobenzene side-chain polymer (Azo-PMA) and spin-coated on silicon nitride membrane to obtain a polymer film of nanoscale thickness for further nanopore generation via controlled dielectric breakdown (CDB) approach.

View Article and Find Full Text PDF

3DCryoHolder: a new open access 3D printable system to store and transport silicon nitride membranes under cryogenic conditions for spectromicroscopy at low temperature.

J Synchrotron Radiat

January 2025

Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Donostia-San Sebastian 20018, Spain.

Data acquisition under cryogenic conditions allows one to avoid unwanted damage caused by beam irradiation. This is particularly important for the study of biological samples at hard X-ray, micro- or nano-probe beamlines, which focus synchrotron radiation to small beam sizes with extremely high flux densities. Sample preparation methods for cryopreserved specimens have been adapted from electron microscopy, and include the use of silicon nitride membranes as they are easy to handle and possess low X-ray absorption.

View Article and Find Full Text PDF

Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical aperture (NA = 1.

View Article and Find Full Text PDF

Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics.

Nanomaterials (Basel)

November 2024

Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary.

Engineering ceramics and their composites are widely used owing to their excellent properties, including high wear, corrosion and heat resistance, low friction coefficient, and low thermal conductivity; thus, the current paper presents a comprehensive review of the most common types of engineering ceramics, demonstrating their key properties, advantages, potential applications, and challenges. This paper also provides prevailing methods for tackling the engineering ceramic challenges and maximizing their applicability. This review paper focuses on alumina (AlO), silicon carbide (SiC), zirconia (ZrO), aluminum nitride (AlN), and silicon nitride (SiN), and explores their usability in automotive, aerospace, and tribological applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!