Ocean iron cycle feedbacks decouple atmospheric CO from meridional overturning circulation changes.

Nat Commun

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA.

Published: July 2024

The ocean's Meridional Overturning Circulation (MOC) brings carbon- and nutrient-rich deep waters to the surface around Antarctica. Limited by light and dissolved iron, photosynthetic microbes incompletely consume these nutrients, the extent of which governs the escape of inorganic carbon into the atmosphere. Changes in MOC upwelling may have regulated Southern Ocean outgassing, resulting in glacial-interglacial atmospheric CO oscillations. However, numerical models that explore this positive relationship do not typically include a feedback between biological activity and abundance of organic chelating ligands that control dissolved iron availability. Here, I show that incorporating a dynamic ligand parameterization inverts the modelled MOC-atmospheric CO relationship: reduced MOC nutrient upwelling decreases biological activity, resulting in scant ligand production, enhanced iron limitation, incomplete nutrient usage, and ocean carbon outgassing, and vice versa. This first-order response suggests iron cycle feedbacks may be a critical driver of the ocean's response to climate changes, independent of external iron supply.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231327PMC
http://dx.doi.org/10.1038/s41467-024-49274-1DOI Listing

Publication Analysis

Top Keywords

iron cycle
8
cycle feedbacks
8
meridional overturning
8
overturning circulation
8
dissolved iron
8
biological activity
8
iron
5
ocean iron
4
feedbacks decouple
4
decouple atmospheric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!