Immunotoxicity of legacy and alternative per- and polyfluoroalkyl substances on zebrafish larvae.

Environ Pollut

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China. Electronic address:

Published: October 2024

Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124511DOI Listing

Publication Analysis

Top Keywords

zebrafish larvae
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
immunotoxic effects
8
effects zebrafish
8
hfpo-da pfechs
8
oxidative stress
8
immunotoxicity legacy
4
legacy alternative
4
alternative per-
4

Similar Publications

Adaptive optics (AO) improves the spatial resolution of microscopy by correcting optical aberrations. While its application has been well established in microscopy modalities utilizing a circular pupil, its adaptation to systems with non-circular pupils, such as Bessel-focus two-photon fluorescence microscopy (2PFM) with an annular pupil, remains relatively uncharted. Herein, we present a modal focal AO (MFAO) method for Bessel-focus 2PFM.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Thyroid Endocrine Disrupting Potential of Fluoxetine in Zebrafish Larvae.

J Appl Toxicol

January 2025

Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, China.

Fluoxetine (FLX), a typical selective serotonin reuptake inhibitors, has been frequently detected in aquatic environment and wild fish. However, little is known about its effect on thyroid endocrine system. In the present study, zebrafish (Danio rerio) embryos were exposed to 1, 3, 10, and 30 μg/L of FLX for 6 days.

View Article and Find Full Text PDF

Oxytetracycline and Florfenicol Association Affects Zebrafish Larvae Behavioral Repertoire.

Arch Environ Contam Toxicol

January 2025

Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Oxytetracycline (OTC) and Florfenicol (FF) are prevalent antibiotics choices in both fish production and livestock farming. A comprehensive understanding of their effects is paramount for effective control of their use and for elucidating their physiological and pharmacological implications. In our investigation, zebrafish larvae were subjected to varying concentrations of OTC, FF or a combination of OTC + FF during 96 h.

View Article and Find Full Text PDF

Behavioral and neurophysiological effects of electrical stunning on zebrafish larvae.

Lab Anim (NY)

January 2025

Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany.

Two methods dominate the way that zebrafish larvae are euthanized after experimental procedures: anesthetic overdose and rapid cooling. Although MS-222 is easy to apply, this anesthetic takes about a minute to act and fish show aversive reactions and interindividual differences, limiting its reliability. Rapid cooling kills larvae after several hours and is not listed as an approved method in the relevant European Union directive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!