Sweet potato [Ipomoea batatas (L.) Lam], the crop with the seventh highest annual production globally, is susceptible to various adverse environmental influences, and the study of stress-resistant genes is important for improving its tolerance to abiotic stress. The enzyme trehalose-6-phosphate synthase (TPS) is indispensable in the one pathway for synthesizing trehalose in plants. TPS is known to participate in stress response in plants, but information on TPS in sweet potato is limited. This study produced the N-terminal truncated IbTPS1 gene (△NIbTPS1) overexpression lines of Arabidopsis thaliana and sweet potato. Following salt and mannitol-induced drought treatment, the germination rate, root elongation, and fresh weight of the transgenic A. thaliana were significantly higher than that in the wild type. Overexpression of △NIbTPS1 elevated the photosynthetic efficiency (Fv/Fm) and the activity of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in sweet potato during drought and salt treatments, while reducing malondialdehyde and O contents, although expression of the trehalose-6-phosphate phosphatase gene IbTPP and trehalose concentrations were not affected. Thus, overexpressing the △NIbTPS1 gene can improve the stress tolerance of sweet potato to drought and salt by enhancing the photosynthetic efficiency and antioxidative enzyme system. These results will contribute to understand the functions of the △NIbTPS1 gene and trehalose in the response mechanism of higher plants to abiotic stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108917DOI Listing

Publication Analysis

Top Keywords

sweet potato
24
abiotic stress
12
n-terminal truncated
8
trehalose-6-phosphate synthase
8
gene △nibtps1
8
tolerance sweet
8
plants tps
8
photosynthetic efficiency
8
potato drought
8
drought salt
8

Similar Publications

Background: Sweetpotato is a vegetatively propagated crop cultivated worldwide, predominantly in developing countries, valued for its adaptability, short growth cycle, and high productivity per unit land area. In most sub-Saharan African (SSA) countries, it is widely grown by smallholder farmers. Niger, Nigeria, and Benin have a huge diversity of sweetpotato accessions whose potential has not fully been explored to date.

View Article and Find Full Text PDF

The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major phytophagous pest that invaded China in late 2018, posing a serious threat to local agricultural production. Therefore, we investigated the effects of maize, soybean, and sweet potato on the growth, development, and reproduction of S. frugiperda under laboratory conditions.

View Article and Find Full Text PDF

First Report of Charcoal Rot Caused by of Sweet Potato in Southern China.

Plant Dis

January 2025

Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;

Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).

View Article and Find Full Text PDF

Sweet potatoes are a rich source of nutrients and bioactive compounds, but their quality can be impacted by the drying process. This study investigates the impact of slot jet reattachment (SJR) nozzle and ultrasound (US) combined drying (SJR + US) on sweet potato quality, compared to freeze-drying (FD), SJR drying, and hot air drying (HAD). SJR + US drying at 50 °C closely resembled FD in enhancing quality attributes and outperformed HAD and SJR in key areas such as rehydration, shrinkage ratios, and nutritional composition.

View Article and Find Full Text PDF

sp. nov. (Fungi: Orbiliales) from Mexico: Predatory Activity and Nematocidal Activity of Its Liquid Culture Filtrates Against (Nematoda: Trichostrongylidae).

J Fungi (Basel)

December 2024

Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock (INIFAP-AGRICULTURA), Jiutepec 62550, Mexico.

During the isolation, identification, and assessment of nematode-trapping fungi (NTF) against nematodes, we discovered an unusual fungus in decaying wood from Morelos State, Mexico. This isolate exhibited some characteristics similar to those of the genus; however, we found that it did not match any previously reported species within this genus after conducting morphological and phylogenetic analyses using the ITS, TEF, and RPB2 regions. This new species displays conidiophores with two or three stems emerging from the same initial site and conidiophores with only a single stem and aerial thickened hyphae from which single conidiophores emerge, forming 3D adhesive nets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!