Cu(OH)NO/γ-AlO catalyzes Fenton-like oxidation for the advanced treatment of effluent organic matter (EfOM) in fermentation pharmaceutical wastewater: The synergy of Cu(OH)NO and γ-AlO.

Water Res

Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:

Published: September 2024

The secondary effluent of fermentation pharmaceutical wastewater exhibits high chromaticity, elevated salinity, and abundant refractory effluent organic matter (EfOM), presenting significant treatment challenges and environmental threats. Herein, Cu(OH)NO/γ-AlO was fabricated through ultrasound-assisted impregnation and calcination to catalyze the Fenton-like oxidation for degrading organic pollutants in this secondary effluent. Under neutral conditions, with 400.00 mg/L HO, 8 g/L catalyst, and at 30 ℃, the EfOM and COD removal efficiencies can reach 96.90 % and 51.56 %, respectively. The Cu(OH)NO/γ-AlO catalyst possesses ideal reusability, maintaining COD, chromaticity, and EfOM removal efficiencies at 44.44 %-64.59 %, 85.45 %-93.45 %, and 61.00 %-95.00 % over 220 h in a continuous-flow catalytic oxidation system operated at room temperatures (15-25 ℃). Electron paramagnetic resonance results and density functional theory calculations indicate that •OOH may be the predominant reactive oxygen species, facilitated by the easier elongation of the OH bond in HO compared to the OO bond. The adjusted electronic structure endows Cu(OH)NO/γ-AlO composite sites with superior catalytic selectivity for HO activation compared to Cu(OH)NO single crystal sites, with γ-AlO additionally facilitating HO activation through electron donation. This research highlights the efficacy of Cu(OH)NO/γ-AlO in the advanced treatment of complex industrial wastewater, elucidating its catalytic mechanisms and potential applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122049DOI Listing

Publication Analysis

Top Keywords

fenton-like oxidation
8
advanced treatment
8
effluent organic
8
organic matter
8
matter efom
8
fermentation pharmaceutical
8
pharmaceutical wastewater
8
secondary effluent
8
removal efficiencies
8
cuohno/γ-alo
5

Similar Publications

Emerging contaminants (ECs) pose great challenges to water treatment technology due to their complexity and high harm. In this paper, the method of dielectric barrier discharge (DBD) plasma coupled with iron-based catalyst (FeNC) activating periodate (PI) was first designed for ECs removal. The ingenious introduction of FeNC not only promotes the Fenton-like reaction of DBD system but also reduces the PI activation energy barrier and accelerates the electron shuttle between PI and pollutants.

View Article and Find Full Text PDF

Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.

Talanta

January 2025

College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, PR China. Electronic address:

FeO nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich FeO NPs (ZrFeO) using a one-pot solvothermal method.

View Article and Find Full Text PDF

Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy.

View Article and Find Full Text PDF

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

Active surface area determines the activity of biochar in Fenton-like oxidation processes.

J Hazard Mater

January 2025

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Biochar (BC) possesses diverse active sites (e.g., oxygen-containing groups OCGs, defects, and electronegative heteroatom) responsible for the catalytic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!