Origins of High-Activity Cage-Catalyzed Michael Addition.

J Am Chem Soc

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.

Published: July 2024

Cage catalysis continues to create significant interest, yet catalyst function remains poorly understood. Herein, we report mechanistic insights into coordination-cage-catalyzed Michael addition using kinetic and computational methods. The study has been enabled by the detection of identifiable catalyst intermediates, which allow the evolution of different cage species to be monitored and modeled alongside reactants and products. The investigations show that the overall acceleration results from two distinct effects. First, the cage reaction shows a thousand-fold increase in the rate constant for the turnover-limiting C-C bond-forming step compared to a reference state. Computational modeling and experimental analysis of activation parameters indicate that this stems from a significant reduction in entropy, suggesting substrate coencapsulation. Second, the cage markedly acidifies the bound pronucleophile, shifting this equilibrium by up to 6 orders of magnitude. The combination of these two factors results in accelerations up to 10 relative to bulk-phase reference reactions. We also show that the catalyst can fundamentally alter the reaction mechanism, leading to intermediates and products that are not observable outside of the cage. Collectively, the results show that cage catalysis can proceed with very high activity and unique selectivity by harnessing a series of individually weak noncovalent interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258793PMC
http://dx.doi.org/10.1021/jacs.4c05160DOI Listing

Publication Analysis

Top Keywords

michael addition
8
cage catalysis
8
cage
6
origins high-activity
4
high-activity cage-catalyzed
4
cage-catalyzed michael
4
addition cage
4
catalysis continues
4
continues create
4
create interest
4

Similar Publications

Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons.

View Article and Find Full Text PDF

AGA Clinical Practice Guideline on the Prevention and Treatment of Hepatitis B Virus Reactivation in At-Risk Individuals.

Gastroenterology

February 2025

Section of Gastroenterology and Hepatology, Veterans Affairs Northeast Ohio Health Care System, Cleveland, Ohio; Division of Gastroenterology and Hepatology, Case Western Reserve University, Cleveland, Ohio.

Background & Aims: Hepatitis B reactivation (HBVr) can occur due to a variety of immune-modulating exposures, including multiple drug classes and disease states. Antiviral prophylaxis can be effective in mitigating the risk of HBVr. In select cases, clinical monitoring without antiviral prophylaxis is sufficient for managing the risk of HBVr.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is common in critically ill patients and is associated with increased morbidity and mortality. Its complications often require renal replacement therapy (RRT). Invasive mechanical ventilation (IMV) and infections are considered risk factors for the occurrence of AKI.

View Article and Find Full Text PDF

Development and Characterization of Hyaluronic Acid Graft-Modified Polydopamine Nanoparticles for Antibacterial Studies.

Polymers (Basel)

January 2025

School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.

The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.

View Article and Find Full Text PDF

Data Checking of Asymmetric Catalysis Literature Using a Graph Neural Network Approach.

Molecules

January 2025

GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK.

The range of chemical databases available has dramatically increased in recent years, but the reliability and quality of their data are often negatively affected by human-error fidelity. The size of chemical databases can make manual data curation/checking of such sets time consuming; thus, automated tools to help this process are highly desirable. Herein, we propose the use of Graph Neural Networks (GNNs) to identifying potential stereochemical misassignments in the primary asymmetric catalysis literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!