During the COVID-19 pandemic, pneumonia was the leading cause of respiratory failure and death. In addition to SARS-COV-2, it can be caused by several other bacterial and viral agents. Even today, variants of SARS-COV-2 are endemic and COVID-19 cases are common in many places. The symptoms of COVID-19 are highly diverse and robust, ranging from invisible to severe respiratory failure. Current detection methods for the disease are time-consuming and expensive with low accuracy and precision. To address such situations, we have designed a framework for COVID-19 and Pneumonia detection using multiple deep learning algorithms further accompanied by a deployment scheme. In this study, we have utilized four prominent deep learning models, which are VGG-19, ResNet-50, Inception V3 and Xception, on two separate datasets of CT scan and X-ray images (COVID/Non-COVID) to identify the best models for the detection of COVID-19. We achieved accuracies ranging from 86% to 99% depending on the model and dataset. To further validate our findings, we have applied the four distinct models on two more supplementary datasets of X-ray images of bacterial pneumonia and viral pneumonia. Additionally, we have implemented a flask app to visualize the outcome of our framework to show the identified COVID and Non-COVID images. The findings of this study will be helpful to develop an AI-driven automated tool for the cost effective and faster detection and better management of COVID-19 patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230556 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302413 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!