The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Here, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetes complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417436 | PMC |
http://dx.doi.org/10.2337/dbi24-0013 | DOI Listing |
J Biol Chem
January 2025
Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033. Electronic address:
Increasing evidence supports the role of an augmented immune response in the early development and progression of renal complications caused by diabetes. We recently demonstrated that podocyte-specific expression of stress response protein regulated in development and DNA damage response 1 (REDD1) contributes to activation of the pro-inflammatory transcription factor NF-κB in the kidney of diabetic mice. The studies here were designed to define the specific signaling events whereby REDD1 promotes NF-κB activation in the context of diabetic nephropathy.
View Article and Find Full Text PDFCell Metab
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China. Electronic address:
The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice.
View Article and Find Full Text PDFCell Signal
December 2024
Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:
Biol Direct
November 2024
Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510080, China.
Geroscience
October 2024
Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!