Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: first, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and second, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3424404 | DOI Listing |
BMC Plant Biol
December 2024
Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
Fruit diameter is one of important agronomy traits that has greatly impacts fruit yield and commercial value in cucumber (Cucumis sativus L.). Hence, we preliminary mapping of fruit diameter was conducted to refine its genetic locus.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electrical Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
The quantity of cable conductors is a crucial parameter in cable manufacturing, and accurately detecting the number of conductors can effectively promote the digital transformation of the cable manufacturing industry. Challenges such as high density, adhesion, and knife mark interference in cable conductor images make intelligent detection of conductor quantity particularly difficult. To address these challenges, this study proposes the YOLO-cable model, which is an improvement made upon the YOLOv10 model.
View Article and Find Full Text PDFMicrocirculation
January 2025
Eye Research Center, The Five Senses Health Institute, Moheb Kowsar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Purpose: To assess the colocalization of ellipsoid zone (EZ) disruption with nonperfusion in choriocapillaris (CC), retinal superficial capillary plexus (SCP), and deep capillary plexus (DCP) in diabetic patients using en face optical coherence tomography (OCT) and OCT angiography (OCTA).
Methods: Macular OCT and OCTA scans (3 × 3 mm) of 41 patients with diabetic retinopathy were obtained using an RTVue XR Avanti instrument. After correcting the shadow artifacts, EZ integrity was assessed in the en face OCT slab using the Gaussian mixture model clustering method compared with the corresponding EZ en face OCT of 11 age-matched normal patients.
Nanomaterials (Basel)
December 2024
Nano Materials Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
This review explores a method of visualizing a demagnetization field () within a thin-foiled NdFeB specimen using electron holography observation. Mapping the is critical in electron holography as it provides the only information on magnetic flux density. The map within a NdFeB thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity.
View Article and Find Full Text PDFJ Magn Reson Imaging
December 2024
Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
Background: Three-dimensional MR fingerprinting (3D-MRF) has been increasingly used to assess cartilage degeneration, particularly in the knee joint, by looking into multiple relaxation parameters. A comparable 3D-MRF approach can be adapted to assess cartilage degeneration for the hip joint, with changes to accommodate specific challenges of hip joint imaging.
Purpose: To demonstrate the feasibility and repeatability of 3D-MRF in the bilateral hip jointly we map proton density (PD), T, T, T, and ∆B in clinically feasible scan times.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!