Photoelectrochemical (PEC) water splitting is gaining recognition as an effective method for producing green hydrogen. However, the absence of in situ, continuous decoding hydrogen generation tools hampers a detailed understanding of the physics and chemistry involved in hydrogen generation within PEC systems. In this article, we present a quantitative, spatiotemporally resolved optical sensor employing a fiber Bragg grating (FBG) to probe hydrogen formation and temperature characteristics in the PEC system. Demonstrating this principle, we observed hydrogen formation and temperature changes in a novel cappuccino cell using a BiVO/TiO photoanode and a CuO/CuO/TiO photocathode. Our findings demonstrate that FBG sensors can probe dynamic hydrogen formation at 0.5 s temporal resolution; these sensors are capable of detecting hydrogen concentrations as low as 0.6 mM. We conducted in situ and continuous monitoring of hydrogen and temperature to ascertain various parameters: the rate of hydrogen production at the photocathode surface, the time to reach hydrogen saturation, the distribution of hydrogen and temperature, and the rate of hydrogen transfer in the electrolyte under both external bias and unbiased voltage conditions. These results contribute valuable insights into the design and optimization of PEC water-splitting devices, advancing the in situ comprehensive monitoring of PEC water-splitting processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c02323 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.
Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of CSE, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!