The brain is an intricate system that controls a variety of functions. It consists of a vast number of cells that exhibit diverse characteristics. To understand brain function in health and disease, it is crucial to classify neurons accurately. Recent advancements in machine learning have provided a way to classify neurons based on their electrophysiological activity. This paper presents a deep-learning framework that classifies neurons solely on this basis. The framework uses data from the Allen Cell Types database, which contains a survey of biological features derived from single-cell recordings from mice and humans. The shared information from both sources is used to classify neurons into their broad types with the help of a joint model. An accurate domain-adaptive model, integrating electrophysiological data from both mice and humans, is implemented. Furthermore, data from mouse neurons, which also includes labels of transgenic mouse lines, is further classified into subtypes using an interpretable neural network model. The framework provides state-of-the-art results in terms of accuracy and precision while also providing explanations for the predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579117 | PMC |
http://dx.doi.org/10.1007/s12021-024-09675-5 | DOI Listing |
J Neurosci
January 2025
Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.
The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information and Communication Engineering, Beijing University of Information Science and Technology, Bei Jing City, China.
To enhance the intelligent classification of computer vulnerabilities and improve the efficiency and accuracy of network security management, this study delves into the application of a comprehensive classification system that integrates the Memristor Neural Network (MNN) and an improved Temporal Convolutional Neural Network (TCNN) in network security management. This system not only focuses on the precise classification of vulnerability data but also emphasizes its core role in strengthening the network security management framework. Firstly, the study designs and implements a neural network model based on memristors.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Bangalore, India.
Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.
View Article and Find Full Text PDFBackground: Tau protein accumulation is closely linked to synaptic and neuronal loss in Alzheimer's disease (AD), resulting in progressive cognitive decline. Although tau-PET imaging is a direct biomarker of tau pathology, it is costly, carries radiation risks, and is not widely accessible. Resting-state functional MRI (rs-fMRI) complexity-an entropy-based measure of BOLD signal variation-has been proposed as a non-invasive surrogate biomarker of early neuronal dysfunction associated with tau pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!