Regenerative medicine aims to restore, replace, and regenerate human cells, tissues, and organs. Despite significant advancements, many cell therapy trials for cardiovascular diseases face challenges like cell survival and immune compatibility, with benefits largely stemming from paracrine effects. Two promising therapeutic tools have been recently emerged in cardiovascular diseases: extracellular vesicles (EVs) and mitochondrial transfer. Concerning EVs, the first pivotal study with EV-enriched secretome derived from cardiovascular progenitor cells has been done treating heart failure. This first in man demonstrated the safety and feasibility of repeated intravenous infusions and highlighted significant clinical improvements, including enhanced cardiac function and reduced symptoms in heart failure patients. The second study uncovered a novel mechanism of endothelial regeneration through mitochondrial transfer via tunneling nanotubes (TNTs). This research showed that mesenchymal stromal cells (MSCs) transfer mitochondria to endothelial cells, significantly enhancing their bioenergetics and vessel-forming capabilities. This mitochondrial transfer was crucial for endothelial cell engraftment and function, offering a new strategy for vascular regeneration without the need for additional cell types. Combining EV and mitochondrial strategies presents new clinical opportunities. These approaches could revolutionize regenerative medicine, offering new hope for treating cardiovascular and other degenerative diseases. Continued research and clinical trials will be crucial in optimizing these therapies, potentially leading to personalized medicine approaches that enhance patient outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12015-024-10758-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!