Resistance to inactive state-selective RASG12C inhibitors frequently entails accumulation of RASGTP, rendering effective inhibition of active RAS potentially desirable. Here, we evaluated the antitumor activity of the RAS(ON) multiselective tricomplex inhibitor RMC-7977 and dissected mechanisms of response and tolerance in KRASG12C-mutant non-small cell lung cancer (NSCLC). Broad-spectrum reversible RASGTP inhibition with or without concurrent covalent targeting of active RASG12C yielded superior and differentiated antitumor activity across diverse comutational KRASG12C-mutant NSCLC mouse models of primary or acquired RASG12C(ON) or RASG12C(OFF) inhibitor resistance. Interrogation of time-resolved single-cell transcriptional responses established an in vivo atlas of multimodal acute and chronic RAS pathway inhibition in the NSCLC ecosystem and uncovered a regenerative mucinous transcriptional program that supports long-term tumor cell persistence. In patients with advanced KRASG12C-mutant NSCLC, the presence of mucinous histologic features portended poor response to sotorasib or adagrasib. Our results have potential implications for personalized medicine and the development of rational RAS inhibitor-anchored therapeutic strategies. Significance: Our work reveals robust and durable antitumor activity of the preclinical RAS(ON) multiselective inhibitor RMC-7977 against difficult-to-treat subsets of KRASG12C-mutant NSCLC with primary or acquired RASG12C inhibitor resistance and identifies a conserved mucinous transcriptional state that supports RAS inhibitor tolerance. See related commentary by Marasco and Misale, p. 2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/2159-8290.CD-24-0421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!