Building better habitats: Spatiotemporal signaling cues in 3D biointerfaces for tailored cellular functionality.

Biointerphases

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark.

Published: July 2024

A promising research direction in the field of biological engineering is the design and functional programming of three-dimensional (3D) biointerfaces designed to support living cell functionality and growth in vitro, offering a route to precisely regulate cellular behaviors and phenotypes for addressing therapeutic challenges. While traditional two-dimensional (2D) biointerfaces have provided valuable insights, incorporating specific signaling cues into a 3D biointeractive microenvironment at the right locations and time is now recognized as crucial for accurately programming cellular decision-making and communication processes. This approach aims to engineer cell-centric microenvironments with the potential to recapitulate complex biological functions into a finite set of growing cellular organizations. Additionally, they provide insights into the hierarchical logic governing the relationship between molecular components and higher-order multicellular functionality. The functional live cell-based microenvironment engineered through such innovative biointerfaces has the potential to be used as an in vitro model system for expanding our understanding of cellular behaviors or as a therapeutic habitat where cellular functions can be reprogrammed.

Download full-text PDF

Source
http://dx.doi.org/10.1116/6.0003685DOI Listing

Publication Analysis

Top Keywords

signaling cues
8
cellular behaviors
8
cellular
6
building better
4
better habitats
4
habitats spatiotemporal
4
spatiotemporal signaling
4
biointerfaces
4
cues biointerfaces
4
biointerfaces tailored
4

Similar Publications

Cytoplasmic mRNA decay and quality control machineries in eukaryotes.

Nat Rev Genet

January 2025

Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.

mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation.

View Article and Find Full Text PDF

Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.

Curr Top Dev Biol

January 2025

Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:

In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.

View Article and Find Full Text PDF

The great diversity of specialist plant-feeding insects suggests that host plant shifts may initiate speciation, even without geographic barriers. Pheromones and kairomones mediate sexual communication and host choice, and the response to these behaviour-modifying chemicals is under sexual and natural selection, respectively. The concept that the interaction of mate signals and habitat cues facilitates reproductive isolation and ecological speciation is well established, while the traits and the underlying sensory mechanisms remain unknown.

View Article and Find Full Text PDF

SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE (SMXL) proteins comprise a family of plant growth regulators that includes downstream targets of the karrikin (KAR)/KAI2 ligand (KL) and strigolactone (SL) signaling pathways. Following the perception of KAR/KL or SL signals by α/β hydrolases, some types of SMXL proteins are polyubiquitinated by an E3 ubiquitin ligase complex containing the F-box protein MORE AXILLARY GROWTH2 (MAX2)/DWARF3 (D3), and proteolyzed. Because SMXL proteins interact with TOPLESS (TPL) and TPL-related (TPR) transcriptional corepressors, SMXL degradation initiates changes in gene expression.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!