A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Eigenvalues of the noise covariance matrix in ocean waveguides. | LitMetric

Eigenvalues of the noise covariance matrix in ocean waveguides.

J Acoust Soc Am

Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: July 2024

The eigenvalue (EV) spectra of the theoretical noise covariance matrix (CM) and observed sample CM provide information about the environment, source, and noise generation. This paper investigates these spectra for vertical line arrays (VLAs) and horizontal line arrays (HLAs) in deep and shallow water numerically. Empirically, the spectra are related to the width of the conventional beamforming output in angle space. In deep water, the HLA noise CM tends to be isotropic regardless of the sound speed profile. Thus, the EV spectrum approaches a step function. In contrast, the VLA noise CM is non-isotropic, and the EVs of the CM jump in two steps. The EVs before the first jump are due to sea surface noise, while those between the first and second jump are due to bottom-reflected noise. In shallow water, the VLA noise CM is affected by the environment (sound speed profile and seabed density, sound speed, attenuation, and layers) and array depth, the EVs have a more complicated structure. For Noise09 VLA experimental data, the noise sample CM EVs match the waveguide noise model better than the three-dimensional isotropic noise model.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0026477DOI Listing

Publication Analysis

Top Keywords

sound speed
12
noise
10
noise covariance
8
covariance matrix
8
shallow water
8
speed profile
8
vla noise
8
evs jump
8
noise model
8
eigenvalues noise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!