Although members of the genus share specific morphological, metabolic, and genomic traits, the diversity of niches and lifestyles adopted by the family members is vast. One species of the group, thrives as a colonizer of plant roots and frequently inhabits soils polluted with various types of chemical waste. Owing to a combination of historical contingencies and inherent qualities, a particular strain, KT2440, emerged time ago as an archetype of an environmental microorganism amenable to recombinant DNA technologies, which was also capable of catabolizing chemical pollutants. Later, the same bacterium progressed as a reliable platform for programming traits and activities in various biotechnological applications. This article summarizes the stepwise upgrading of KT2440 from being a system for fundamental studies on the biodegradation of aromatic compounds (especially when harboring the TOL plasmid pWW0) to its adoption as a chassis of choice in metabolic engineering and synthetic biology. Although there are remaining uncertainties about the taxonomic classification of KT2440, advanced genome editing capabilities allow us to tailor its genetic makeup to meet specific needs. This makes its traditional categorization somewhat less important, while also increasing the strain's overall value for contemporary industrial and environmental uses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270871 | PMC |
http://dx.doi.org/10.1128/jb.00136-24 | DOI Listing |
J Food Sci
January 2025
Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.
View Article and Find Full Text PDFBiodegradation
January 2025
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Japan.
Nanoclusters are nanometer-sized molecular compounds characterized by significant metal-metal bonding and low average oxidation states, and they exhibit unique properties distinct from those of small metal complexes or nanoparticles. Unlike noble metals stable in metallic forms, the synthesis of nanometer-sized iron clusters has been precluded by the relatively weak iron-iron bonds and the high reactivity of low oxidation state iron, despite the extensive history of molecular iron compounds. Here, we report the synthesis and characterization of a cationic 55-atom iron cluster with a 1.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute for Biomedicine and Glycomics, School of Environment and Science, Griffith University, 46 Don Young Road, Brisbane QLD 4111, Australia., Brisbane, QLD 4111, Australia.
While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!