A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flexible circuit-based spatially aware modular optical brain imaging system for high-density measurements in natural settings. | LitMetric

Significance: Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.

Aim: The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.

Approach: The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3D positions in real time to enable advanced tomographic data analysis and motion tracking.

Results: Optical characterization of the MOBI detector reports a noise equivalence power of 8.9 and at 735 and 850 nm, respectively, with a dynamic range of 88 dB. The 3D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared with positions acquired from a digitizer. Results for initial validations, including a cuff occlusion and a finger-tapping test, are also provided.

Conclusions: To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3D optode position acquisition, combined with lightweight modules ( ) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224775PMC
http://dx.doi.org/10.1117/1.NPh.11.3.035002DOI Listing

Publication Analysis

Top Keywords

mobi system
12
modular optical
8
optical brain
8
brain imaging
8
system
5
flexible circuit-based
4
circuit-based spatially
4
spatially aware
4
modular
4
aware modular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!