Motivating parents to protect their children from wildfire smoke: the impact of air quality index infographics.

Environ Res Commun

Center for Science Communication Research, School of Journalism and Communication, University of Oregon, United States of America.

Published: July 2024

. Wildfire smoke events are increasing in frequency and intensity due to climate change. Children are especially vulnerable to health effects even at moderate smoke levels. However, it is unclear how parents respond to Air Quality Indices (AQIs) frequently used by agencies to communicate air pollution health risks. . In an experiment (3 × 2 × 2 factorial design), 2,100 parents were randomly assigned to view one of twelve adapted AQI infographics that varied by visual (table, line, gauge), index type (AQI [0-500], AQHI [1-11+]), and risk level (moderate, high). Participants were told to imagine encountering the infographic in a short-term exposure scenario. They reported worry about wildfire smoke, intentions to take risk-mitigating actions (e.g., air purifier use), and support for various exposure reduction policies. Subsequently, participants were told to imagine encountering the same infographic daily during a school week in a long-term exposure scenario and again reported worry, action intentions, and policy support. . Parents' responses significantly differentiated between risk levels that both pose a threat to children's health; worry and action intentions were much higher in the high-risk group than the moderate-risk group in both short-exposure (F = 748.68 p<.001; F = 411.59, p<.001) and long-exposure scenarios (F = 470.51, p<.001; F = 212.01, p<.001). However, in the short-exposure scenario, when shown the AQHI [1-11+] with either the line or gauge visuals, parents' action intentions were more similar between moderate- and high-risk level groups (3-way interaction, F = 6.03, p = .002). . These results suggest some index formats such as the AQHI-rather than the AQI-may better attune parents to moderate levels of wildfire smoke being dangerous to children's health. Our research offers insights for agencies and officials seeking to improve current public education efforts during wildfire smoke events and speaks to the critical need to educate parents and help them act short-term and long-term to protect children's health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223187PMC
http://dx.doi.org/10.1088/2515-7620/ad5931DOI Listing

Publication Analysis

Top Keywords

wildfire smoke
12
air quality
8
participants told
8
told imagine
8
imagine encountering
8
encountering infographic
8
exposure scenario
8
scenario reported
8
reported worry
8
worry action
8

Similar Publications

This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.

View Article and Find Full Text PDF

As wildfire events become more frequent, there is a need to better understand the impact of smoke on the environment and human health. Smoke, or biomass burning aerosol (BBA), can undergo atmospheric processing changing its chemical and optical properties. We examined the interactions between four lignin pyrolysis products (catechol, syringol, syringic acid, and vanillic acid) and three BBA-relevant iron oxide mineral phases (hematite, maghemite, and magnetite) using attenuated total reflectance-Fourier transform infrared spectroscopy and dissolved iron measurements to better understand how atmospheric processing changes concentrations of soluble iron, iron oxidation state, and brown carbon abundance.

View Article and Find Full Text PDF

This study investigated the speciation and aqueous dissolution of macronutrients in fire ash from diverse ecosystems and speciation of ash and smoke from laboratory burning, exploring the variations and their causes. The speciation of phosphorus (P), calcium (Ca), and potassium (K) in fire ash from five globally distributed ecosystems was characterized by using X-ray absorption spectroscopy and sequential fractionation. Aqueous dissolution of the macronutrients was measured by batch experiments at acidic and alkaline pHs.

View Article and Find Full Text PDF

The health effects of poor air quality.

Nursing

January 2025

Karilee Bingham is an assistant professor and program director of the accelerated nursing program at SUNY Brockport.

Smoke, particularly from wildfires and other combustion sources, is a significant contributor to air pollution, comprising a complex mixture of particulate matter and gaseous pollutants. Prolonged exposure to smoke can exacerbate respiratory diseases, such as asthma and chronic obstructive pulmonary disease, leading to increased ED visits and hospitalizations. This article examines the significant health risks associated with air pollution, particularly chronic diseases and acute respiratory conditions, and discusses the emergency treatment of acute respiratory distress from exposure.

View Article and Find Full Text PDF

Encountering Prescribed Fire: Characterizing the Intersection of Prescribed Fire and Wildfire in the CONUS.

ACS EST Air

December 2024

Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States.

Prescribed fire is applied across the United States as a fuel treatment to manage the impact of wildfires and restore ecosystems. While the recent application of prescribed fire has largely been confined to the southeastern US, the increase in catastrophic wildfires has accelerated the growth of prescribed fire more broadly. To effectively achieve wildfire risk reduction benefits, which includes reducing the amount of smoke emitted, the area treated by prescribed fire must come into contact with a subsequent wildfire.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!