The intestinal epithelium plays an important role in maintaining the intestinal barrier and facilitating nutrient absorption. It also serves as a critical physical barrier against the infiltration of foreign substances from the intestinal lumen into the circulation. Intestinal barrier dysfunction has been implicated in the development of several diseases. Isomaltooligosaccharides (IMOs), which are a type of dietary fiber, possess multiple health benefits. However, there is limited information regarding their efficacy against gastrointestinal diseases. This review explores the therapeutic potential of IMOs in obesity, diabetes mellitus, inflammatory bowel disease (IBD), hyperlipidemia, and constipation. High-fat diet (HFD)-induced obesity models have shown that IMOs, administered alone or in combination with other compounds, exhibit potent antiobesity effects, making them promising agents in the treatment of obesity and its associated complications. Moreover, IMOs exhibit preventive effects against HFD-induced metabolic dysfunction by modulating gut microbiota and short-chain fatty acid levels, thereby ameliorating symptoms. Furthermore, IMOs can reduce IBD and alleviate hyperlipidemia, as indicated by the reduced histological colitis scores and improved lipid profiles observed in clinical trials and animal studies. This review highlights IMOs as a versatile intervention strategy that can improve gastrointestinal health by modulating gut microbiota, immune responses, and metabolic parameters, providing a multifaceted approach to address the complex nature of gastrointestinal disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223922 | PMC |
http://dx.doi.org/10.3746/pnf.2024.29.2.93 | DOI Listing |
Pharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Psychiatry, Oxford University, Warneford Hospital, Oxford OX3 7JX, UK.
: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.
Plant extracts demonstrate significant potential as a rich source of active pharmaceutical ingredients, exhibiting diverse biological activities and minimal toxicity. However, the low aqueous solubility of extracts and their gastrointestinal permeability, as well as their poor oral bioavailability, limit clinical advancements due to drug delivery problems. An amorphous solid dispersion (ASD) delivers drugs by changing an active pharmaceutical ingredient (API) into an amorphous state to increase the solubility and availability of the API to the body.
View Article and Find Full Text PDFToxics
December 2024
Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia.
Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments.
View Article and Find Full Text PDFNutrients
December 2024
Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
Background: Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition.
Methods: To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!