A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis. | LitMetric

LASSO-Based Machine Learning Algorithm for Prediction of PICS Associated with Sepsis.

Infect Drug Resist

Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, People's Republic of China.

Published: July 2024

Introduction: This study aims to establish a comprehensive, multi-level approach for tackling tropical diseases by proactively anticipating and managing Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) within the initial 14 days of Intensive Care Unit (ICU) admission. The primary objective is to amalgamate a diverse array of indicators and pathogenic microbial data to pinpoint pivotal predictive variables, enabling effective intervention specifically tailored to the context of tropical diseases.

Methods: A focused analysis was conducted on 1733 patients admitted to the ICU between December 2016 and July 2019. Utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) regression, disease severity and laboratory indices were scrutinized. The identified variables served as the foundation for constructing a predictive model designed to forecast the occurrence of PICS.

Results: Among the subjects, 13.79% met the diagnostic criteria for PICS, correlating with a mortality rate of 38.08%. Key variables, including red-cell distribution width coefficient of variation (RDW-CV), hemofiltration (HF), mechanical ventilation (MV), Norepinephrine (NE), lactic acidosis, and multiple-drug resistant bacteria (MDR) infection, were identified through LASSO regression. The resulting predictive model exhibited a robust performance with an Area Under the Curve (AUC) of 0.828, an accuracy of 0.862, and a specificity of 0.977. Subsequent validation in an independent cohort yielded an AUC of 0.848.

Discussion: The acquisition of RDW-CV, HF requirement, MV requirement, NE requirement, lactic acidosis, and MDR upon ICU admission emerges as a pivotal factor for prognosticating PICS onset in the context of tropical diseases. This study highlights the potential for significant improvements in clinical outcomes through the implementation of timely and targeted interventions tailored specifically to the challenges posed by tropical diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225988PMC
http://dx.doi.org/10.2147/IDR.S464906DOI Listing

Publication Analysis

Top Keywords

tropical diseases
12
icu admission
8
context tropical
8
lasso regression
8
predictive model
8
lactic acidosis
8
requirement requirement
8
lasso-based machine
4
machine learning
4
learning algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!