Evaluation of a Covalent Library of Diverse Warheads (CovLib) Binding to JNK3, USP7, or p53.

Drug Des Devel Ther

Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany.

Published: July 2024

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SAr/SN).

Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS).

Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SAr-type electrophile SN002 as a mildly reactive covalent hit for p53.

Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226190PMC
http://dx.doi.org/10.2147/DDDT.S466829DOI Listing

Publication Analysis

Top Keywords

usp7 p53
12
jnk3 usp7
8
covalent binding
8
melting temperatures
8
covalent
5
fragments
5
evaluation covalent
4
covalent library
4
library diverse
4
diverse warheads
4

Similar Publications

Hepatitis B is a viral infection of the liver caused by the hepatitis B virus (HBV). Entecavir (ETV) is considered the primary therapeutic option for HBV treatment, primarily functioning by inhibiting HBV replication. Ubiquitin-specific peptidase 7 (USP7), a deubiquitinating enzyme, plays a crucial role in regulating DNA repair mechanisms.

View Article and Find Full Text PDF

Knockdown Proteomics Reveals USP7 as a Regulator of Cell-Cell Adhesion in Colorectal Cancer via AJUBA.

Mol Cell Proteomics

December 2024

School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom. Electronic address:

Ubiquitin-specific protease 7 (USP7) is implicated in many cancers including colorectal cancer in which it regulates cellular pathways such as Wnt signaling and the P53-MDM2 pathway. With the discovery of small-molecule inhibitors, USP7 has also become a promising target for cancer therapy and therefore systematically identifying USP7 deubiquitinase interaction partners and substrates has become an important goal. In this study, we selected a colorectal cancer cell model that is highly dependent on USP7 and in which USP7 knockdown significantly inhibited colorectal cancer cell viability, colony formation, and cell-cell adhesion.

View Article and Find Full Text PDF

Ubiquitin-specific peptidase 7 (USP7) is a deubiquitinating enzyme that mediates the stability and activity of numerous proteins. At basal expression levels, USP7 stabilizes p53 protein, even in the presence of excess MDM2. However, its overexpression leads to the deubiquitination of MDM2 at a rate faster than p53, leading to p53 degradation and pro-tumorigenic roles.

View Article and Find Full Text PDF

Ubiquitin-specific protease-7 (USP7) is an important drug target as it regulates multiple proteins and genes (such as MDM2 and p53) with roles in cancer progression. Its inhibition can hinder the function of oncogenes, increase tumor suppression, and enhance immune response. The current study was designed to express USP7 in a prokaryotic system, followed by screening of small molecules against it using biophysical methods, primarily STD-NMR technique.

View Article and Find Full Text PDF

Introduction: TP53 is one of the most frequently mutated genes among all cancers, and TP53 mutants occur more than 40% in colorectal cancers (CRCs). Accumulation of mutant p53 may augment colorectal cancer stem cells (CCSCs) phenotype and enhance colorectal tumorigenesis. Thus, reducing the level of mutant p53 protein is an attractive anticancer strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!