Morphological, gene sequence, host tissue tropism, and life cycle characteristics were utilized to describe the myxozoan, n. sp. from fathead minnow, collected from reservoirs in southern Alberta. Results from serial histological sections of whole heads showed that myxospores were contained within irregular-shaped and sized coelozoic capsules (=plasmodia). Clusters of membrane-bound, myxospore-filled plasmodia filled the head cavities of juvenile fathead minnows, leading to the development of large, white, disfiguring lesions in mid to late summer. Bilateral exopthalmia (pop-eye disease) was a common outcome of n. sp. development. BLASTn search of a 1974 bp sequence of the 18S rDNA gene isolated from myxospores indicated that . n. sp. was distinct from other coelozoic and histozoic spp. cataloged in GenBank. 18S rDNA gene sequences from triactinomyxon spores released from the oligochaete were 100% identical to sequences from myxospores collected from syntopic fathead minnows. Results from a longitudinal survey of the 2020 cohort of fathead minnows showed that young-of-the-year are exposed at 1-5 mo and that 60-90% of these had developed myxospore-filled lesions approximately one year later. Data regarding potential sources and timing of n. sp. emergence in fathead minnow populations are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225701 | PMC |
http://dx.doi.org/10.1016/j.ijppaw.2024.100944 | DOI Listing |
Environ Toxicol Chem
January 2025
Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States.
The glucocorticoid receptor (GR) is present in almost every vertebrate cell and is utilized in many biological processes. Despite an abundance of mammalian data, the structural conservation of the receptor and cross-species susceptibility, particularly for aquatic species, has not been well defined. Efforts to reduce, refine, and/or replace animal testing have increased, driving the impetus to advance development of new approach methodologies (NAMs).
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
Microplastics (< 5 mm) are a diverse class of contaminants ranging in morphology, polymer type, and chemical cocktail. Microplastic toxicity can be driven by one or a combination of these characteristics. Most studies, however, evaluate the physical effect of the most commercially available polymers.
View Article and Find Full Text PDFChemosphere
January 2025
Aquatic Science Center, Wisconsin Sea Grant, University of Wisconsin - Madison, Madison, WI, USA. Electronic address:
Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development.
View Article and Find Full Text PDFEnviron Health (Wash)
December 2024
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
To clarify the effect of the fluorine atom and piperazine ring on norfloxacin (NOR), NOR degradation products (NOR-DPs, P1-P8) were generated via UV combined with hydrogen peroxide (UV/HO) technology. NOR degradation did not significantly affect cytotoxicity of NOR against BV2, A549, HepG2, and Vero E6 cells. Compared with that of NOR, mutagenicity and median lethal concentration of P1-P8 in fathead minnow were increased, and bioaccumulation factor and oral median lethal dose of P1-P8 in rats were decreased.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Civil & Environmental Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
Little is known about the potential impact of point source contamination from seed treatment pesticide residues and degradation products in waste products in treated seed. The presence of these pesticides and their degradation products in the environment has been associated with toxic effects on non-target organisms including bees, aquatic organisms and humans. In this study, we investigated the occurrence of twenty-two pesticide residues and their degradation products in two streams receiving runoff from land-applied wet cake, applied and spilled wastewater originating at a biofuels production facility using pesticide-treated seed as a feedstock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!