Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scientific interest in luminescent solar concentrators (LSCs) has reemerged mainly due to the application of semiconductor quantum dots (QDs) as highly efficient luminophores. Recently, LSCs have become attractive proposals for Building-Integrated photovoltaics (BIPV) since they could help conventional photovoltaics to improve sunlight harvesting and reduce production costs. However, most of the modern LSCs rely on heavy-metal QDs which are highly toxic and may cause environmental concerns. Additionally, their absorption spectra give them a characteristic color limiting their potential application in BIPV. Herein, we fabricated transparent and colorless LSCs by embedding nontoxic and cost-effective zinc oxide quantum dots (ZnO QDs) in a PMMA polymer matrix (ZnO-LSC), preserving the QD optical properties and PMMA transparency. The synthesized colloidal ZnO QDs have an average size of 5.5 nm, a hexagonal wurtzite crystalline structure, a broad yellow photoluminescent signal under ultraviolet excitation, and are highly visibly transparent at the employed concentrations (>95% in wavelengths above 400 nm). The optical characterization of the fabricated ZnO-LSCs showed a good visible transparency of 80.3% average visible transmission (AVT), with an LSC concentration factor () of 1.02. An optimal device (ZnO-LSC-O) could reach a value of 2.66 with the combination of optical properties of colloidal ZnO QDs and PMMA. Finally, simulations of the performance of silicon solar cells coupled to the fabricated and optimal LSCs under standard AM 1.5G illumination were performed employing the software COMSOL Multiphysics. The fabricated ZnO-LSC achieved a simulated maximum power conversion efficiency (PCE) of 3.80%, while the optimal ZnO-LSC-O reached 5.45%. Also, the ZnO-LSC generated a maximum power of 15.02 mW and the ZnO-LSC-O generated 40.33 mW, employing the same active area as the simulated solar cell directly illuminated, which generated 14.39 mW. These results indicate that the ZnO QD-based LSCs may be useful as transparent photovoltaic windows for BIPV applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223140 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!