Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Existing research is difficult to fully capture the correlation between gas molecules and pore wall interactions, multiphase flow, and stress distribution in nanopores. Taking gas as an example, a microscopic model was constructed. At the same time, diffusion, seepage, and stress were considered to accurately predict and manage gas transport in nanopores. First, molecular dynamics (MD) simulation methods were adopted to simulate the motion trajectories and interactions of gas molecules in nanopores. Second, a multiscale model was established based on continuum mechanics to consider the interaction between pore walls and gas molecules, and a diffusion equation was established to describe the diffusion process of gas molecules in pores. Then, finite element analysis and porous media models were used to simulate the seepage behavior of gas in the nanopores. Finally, the stress distribution in the pores was analyzed, and the influence of the interaction between the pore wall and gas molecules on stress was considered. The multifield coupling model was experimentally evaluated from three aspects: diffusion coefficient, seepage behavior, and stress distribution. The root-mean-square error (RMSE) and mean absolute error (MAE) of the model in different testing directions were calculated using different simulation tools, such as COMSOL, ANSYS, OpenFOAM, and CFX. The mean values of RMSE and MAE were lower than 0.20 and 0.17, respectively. The constructed model can comprehensively describe gas transmission within nanopores, improving the management accuracy and efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223248 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01572 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!