Mechanistic Insights into Plasma Oxidation of Ag Nanofilms: Experimental and Theoretical Studies.

ACS Omega

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Published: July 2024

AI Article Synopsis

  • Plasma oxidation can create nanoporous oxides at room temperature and allows for easy control of the oxidation rate, making it a promising method for metal treatments.
  • Research specifically on silver (Ag) has been extensive due to its corrosion behavior in atomic oxygen, yet key factors like the role of atomic O and the microstructural changes during oxidation have been overlooked.
  • This study focuses on Ag films on silicon substrates, analyzing how plasma pressure and power influence oxidation kinetics and microstructural evolution, revealing key insights into the interplay of atomic O, vacancy creation, and oxide layer growth.

Article Abstract

Plasma oxidation of metals has been studied extensively to fabricate nanoporous oxides with the merits of room temperature treatment and facile control of the oxidation rate. Plasma oxidation of Ag, motivated by studies on atomic oxygen corrosion of Ag, is one of the most studied systems. However, several important questions remain unaddressed and even overlooked traditionally: the critical role played by atomic O in promoting oxidation, evolution of microstructures during plasma exposure, and a sound framework for quantitative oxidation kinetic analyses. In this paper, the O plasma oxidation behavior of Ag films deposited on Si substrates was systematically studied both experimentally and theoretically. The effects of plasma pressure and power on the microstructural evolution and oxidation kinetics of Ag films of various thicknesses were investigated using comprehensive characterization, as well as numerical analysis of plasma chemistry for deriving atomic O concentration. The findings here provide a full picture and deep mechanistic insights into the morphology and microstructure evolution of Ag films and the growth of dense or porous AgO and AgO oxide layers by plasma oxidation, revealing the intricate interplay between atomic O, vacancy creation, Ag ion diffusion, Kirkendall effect, formation of pores, and interfacial void coalescence. The methodology developed here can be easily transferred to help understand the plasma oxidation behavior of other metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223243PMC
http://dx.doi.org/10.1021/acsomega.4c03608DOI Listing

Publication Analysis

Top Keywords

plasma oxidation
24
oxidation
10
plasma
9
mechanistic insights
8
oxidation behavior
8
insights plasma
4
oxidation nanofilms
4
nanofilms experimental
4
experimental theoretical
4
theoretical studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!