AI Article Synopsis

  • X-ray structures of coronavirus drug targets were rapidly acquired during the early COVID-19 pandemic, especially focusing on the main protease (Mpro) of SARS-CoV-2, which is crucial for developing direct antiviral drugs.
  • A systematic, semi-automated method was developed to select the best ensemble of Mpro structures for virtual screening of potential inhibitors, as the selection process was complex.
  • This method was validated against existing approaches and led to the discovery of new thienopyrimidinone derivatives that effectively inhibit the Mpro enzyme.

Article Abstract

During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.202300279DOI Listing

Publication Analysis

Top Keywords

virtual screening
16
main protease
8
ensemble selection
8
ensemble
4
ensemble docking
4
docking based
4
virtual
4
based virtual
4
screening
4
screening sars-cov-2
4

Similar Publications

Improving Molecular Design with Direct Inverse Analysis of QSAR/QSPR Model.

Mol Inform

January 2025

Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

Recent advances in machine learning have significantly impacted molecular design, notably the molecular generation method combining the chemical variational autoencoder (VAE) with Gaussian mixture regression (GMR). In this method, a mathematical model is constructed with X as the latent variable of the molecule and Y as the target properties and activities. Through direct inverse analysis of this model, it is possible to generate molecules with the desired target properties.

View Article and Find Full Text PDF

COX-2 Inhibitor Prediction With KNIME: A Codeless Automated Machine Learning-Based Virtual Screening Workflow.

J Comput Chem

January 2025

Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.

Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.

View Article and Find Full Text PDF

Endometrial cancer is the most prevalent gynecologic cancer in the United States and has rising incidence and mortality. Endometrial intraepithelial neoplasia or atypical endometrial hyperplasia (EIN-AEH), a precancerous neoplasm, is surgically managed with hysterectomy in patients who have completed childbearing because of risk of progression to cancer. Concurrent endometrial carcinoma (EC) is also present on hysterectomy specimens in up to 50% of cases.

View Article and Find Full Text PDF

The fuel system serves as the core component of marine diesel engines, and timely and effective fault diagnosis is the prerequisite for the safe navigation of ships. To address the challenge of current data-driven fault-diagnosis-based methods, which have difficulty in feature extraction and low accuracy under small samples, this paper proposes a fault diagnosis method based on digital twin (DT), Siamese Vision Transformer (SViT), and K-Nearest Neighbor (KNN). Firstly, a diesel engine DT model is constructed by integrating the mathematical, mechanism, and three-dimensional physical models of the Medium-speed diesel engines of 6L21/31 Marine, completing the mapping from physical entity to virtual entity.

View Article and Find Full Text PDF

Eumycetoma, a chronic fungal infection caused by , is a neglected tropical disease characterized by tumor-like growths that can lead to permanent disability and deformities if untreated. Predominantly affecting regions in Africa, South America, and Asia, it imposes significant physical, social, and economic burdens. Current treatments, including antifungal drugs like itraconazole, often show variable efficacy, with severe cases necessitating surgical intervention or amputation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!