Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383372PMC
http://dx.doi.org/10.1172/jci.insight.173240DOI Listing

Publication Analysis

Top Keywords

adipose lpl
20
development hypertriglyceridemia
12
lpl expression
12
lpl
11
downregulation adipose
8
lipid storage
8
par2 expression
8
expression inversely
8
inversely correlated
8
decreased lpl
8

Similar Publications

Different sheep breeds show distinct phenotypic plasticity in fat deposition in the tails. The genetic background underlying fat deposition in the tail of sheep is complex, multifactorial, and may involve allele-specific expression (ASE) mechanism to modulate allelic expression. ASE is a common phenomenon in mammals and refers to allelic imbalanced expression modified by cis-regulatory genetic variants that can be observed at heterozygous loci.

View Article and Find Full Text PDF

ABCG1 orchestrates adipose tissue macrophage plasticity and insulin resistance in obesity by rewiring saturated fatty acid pools.

Sci Transl Med

December 2024

Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, F-75013 Paris, France.

The mechanisms governing adipose tissue macrophage (ATM) metabolic adaptation during diet-induced obesity (DIO) are poorly understood. In obese adipose tissue, ATMs are exposed to lipid fluxes, which can influence the activation of specific inflammatory and metabolic programs and contribute to the development of obesity-associated insulin resistance and other metabolic disorders. In the present study, we demonstrate that the membrane ATP-binding cassette g1 (Abcg1) transporter controls the ATM functional response to fatty acids (FAs) carried by triglyceride-rich lipoproteins, which are abundant in high-energy diets.

View Article and Find Full Text PDF

Objective: To investigate the mechanism of liraglutide affecting lipid metabolism by regulating lipolysis and lipogenesis in cells and ob/ob mice.

Methods: 3 T3-L1 cells were treated with liraglutide in vitro, and differentially expressed genes were screened by RNA sequencing. Gene Ontology (GO) and KEGG (Kvoto Encyclopedia of Genes and Genomes) enrichment analyses identified target genes for lipid regulation of liraglutide.

View Article and Find Full Text PDF

Analysis of Lipid Metabolism in Adipose Tissue and Liver of Chinese Soft-Shelled Turtle During Hibernation.

Int J Mol Sci

November 2024

Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China.

Article Synopsis
  • Hibernation helps animals conserve energy by lowering their metabolic rate and aids survival in tough conditions, but the details of energy adaptation in hibernating ectotherms are still debated.
  • The study found decreased lipid levels and metabolism-related gene expression during hibernation, leading to reduced fat cell sizes and lipid content in the liver, along with lower serum lipid levels and increased glucose.
  • Transcriptomic and lipidomic analyses showed a suppression of lipid metabolism pathways and genes tied to fat breakdown (lipolysis) during hibernation, enhancing our understanding of how these animals adapt their energy use for survival.
View Article and Find Full Text PDF

Omega-3 fatty acid regulation of lipoprotein lipase and FAT/CD36 and its impact on white adipose tissue lipid uptake.

Lipids Health Dis

November 2024

Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.

Lipid uptake by white adipose tissue (WAT) is critically important for storage of excess energy and to protect peripheral tissues from ectopic lipid deposition. When WAT becomes dysfunctional (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!