Tumor histomorphology is crucial for the prognostication of breast cancer outcomes because it contains histological, cellular, and molecular tumor heterogeneity related to metastatic potential. To enhance breast cancer prognosis, we aimed to apply radiomics analysis-traditionally used in 3D scans-to 2D histopathology slides. This study tested radiomics analysis in a cohort of 92 breast tumor specimens for outcome prognosis, addressing -omics dimensionality by comparing models with moderate and high feature counts, using least absolute shrinkage and selection operator for feature selection and machine learning for prognostic modeling. In the test folds, models with radiomics features [area under the curves (AUCs) range 0.799-0.823] significantly outperformed the benchmark model, which only included clinicopathological (CP) parameters (AUC = 0.584). The moderate-dimensionality model with 11 CP + 93 radiomics features matched the performance of the highly dimensional models with 1,208 radiomics or 11 CP + 1,208 radiomics features, showing average AUCs of 0.823, 0.799, and 0.807 and accuracies of 79.8, 79.3, and 76.6%, respectively. In conclusion, our application of deep texture radiomics analysis to 2D histopathology showed strong prognostic performance with a moderate-dimensionality model, surpassing a benchmark based on standard CP parameters, indicating that this deep texture histomics approach could potentially become a valuable prognostic tool.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mam/ozae057DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
radiomics features
12
radiomics
8
radiomics analysis
8
moderate-dimensionality model
8
1208 radiomics
8
deep texture
8
bridging histopathology
4
histopathology radiomics
4
radiomics prognosis
4

Similar Publications

Background: Breast cancer (BC) is the most common cancer in women in the U.S. and a leading cause of cancer-related deaths.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.

View Article and Find Full Text PDF

The Dynamic Changes of COL11A1 Expression During the Carcinogenesis and Development of Breast Cancer and as a Candidate Diagnostic and Prognostic Marker.

Breast J

January 2025

Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.

Collagen type XI alpha 1 (COL11A1), a critical member of the collagen superfamily, is essential for tissue structure and integrity. This study aimed to validate previously identified variations in COL11A1 expression during breast cancer carcinogenesis and progression, as well as elucidate their clinical implications. COL11A1 mRNA expression levels were assessed using real-time reverse transcription-PCR (RT-PCR) in 30 pairs of normal breast tissue and primary breast cancer, 30 pairs of primary breast cancer and lymph node metastases, 30 benign tumors, and 107 primary breast cancers.

View Article and Find Full Text PDF

Quantitative immunohistochemistry analysis of breast Ki67 based on artificial intelligence.

Open Life Sci

December 2024

Department of Pathology, Hangzhou Women's Hospital, 369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China.

Breast cancer is a common malignant tumor of women. Ki67 is an important biomarker of cell proliferation. With the quantitative analysis, it is an important indicator of malignancy for breast cancer diagnosis.

View Article and Find Full Text PDF

Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!