Covalent organic frameworks (COFs), at the forefront of porous materials, hold tremendous potential in membrane separation; however, achieving high continuity in COF membranes remains crucial for efficient gas separation. Here, we present a unique approach termed assembly-dissociation-reconstruction for fabricating COF membranes tailored for CO/N separation. A parent COF is designed from two-node aldehyde and three-node amine monomers and dissociated to high-aspect-ratio nanosheets. Subsequently, COF nanosheets are orderly reconstructed into a crack-free membrane by surface reaction under water evaporation. The membrane exhibits high crystallinity, open pores and a strong affinity for CO adsorption over N, resulting in CO permeance exceeding 1060 GPU and CO/N selectivity surpassing 30.6. The efficacy of this strategy offers valuable guidance for the precise fabrication of gas-separation membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202411724DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
high continuity
8
cof membranes
8
assembly-dissociation-reconstruction synthesis
4
synthesis covalent
4
organic framework
4
membranes
4
framework membranes
4
membranes high
4
continuity efficient
4

Similar Publications

Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells.

ACS Nano

January 2025

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.

View Article and Find Full Text PDF

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.

View Article and Find Full Text PDF

Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer-ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site.

View Article and Find Full Text PDF

Nanospace Engineering for C Aromatic Isomer Separation.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.

C aromatic isomers, namely para-xylene (PX), meta-xylene (MX), ortho-xylene (OX), and ethylbenzene (EB), are essential industrial chemicals with a wide range of applications. The effective separation of these isomers is crucial across various sectors, including petrochemicals, pharmaceuticals, and polymer manufacturing. Traditional separation methods, such as distillation and solvent extraction, are energy-intensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!