Metal phosphides with easy synthesis, controllable morphology, and high capacity are considered as potential anodes for sodium-ion batteries (SIBs). However, the inherent shortcomings of metal phosphating materials, such as conductivity, kinetics, volume strain, etc are not satisfactory, which hinders their large-scale application. Here, a CoP@carbon nanofibers-composite containing rich Co─N─C heterointerface and phosphorus vacancies grown on carbon cloth (CoP@MEC) is synthesized as SIB anode to accomplish extraordinary capacity and ultra-long cycle life. The hybrid composite nanoreactor effectively impregnates defective CoP as active reaction center while offering Co─N─C layer to buffer the volume expansion during charge-discharge process. These vast active interfaces, favored electrolyte infiltration, and a well-structured ion-electron transport network synergistically improve Na storage and electrode kinetics. By virtue of these superiorities, CoP@MEC binder-free anode delivers superb SIBs performance including a high areal capacity (2.47 mAh cm@0.2 mA cm), high rate capability (0.443 mAh cm@6 mA cm), and long cycling stability (300 cycles without decay), thus holding great promise for inexpensive binder-free anode-based SIBs for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403719 | DOI Listing |
RSC Adv
January 2025
School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China
This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.
View Article and Find Full Text PDFACS Omega
December 2024
School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China.
Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University P. O. Box 1888 Adama Ethiopia
Hierarchical binder-free NiCoO@CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCoO nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.
View Article and Find Full Text PDFACS Omega
December 2024
2D Materials and Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
The demand for compact energy storage devices necessitates the development of high-performance anode materials directly integrated with current collectors, minimizing or eliminating the need for binders or additives. With its layered structure and high theoretical capacity, molybdenum disulfide (MoS) is regarded as a promising anode material for lithium-ion batteries (LIBs). Here, we report chemical vapor deposition (CVD) growth of self-integrated, vertically aligned MoS nanosheets with embedded molybdenum dioxide (MoO) directly on a molybdenum foil and explore its potential as an anode material for LIBs.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
As the core component of microbial fuel cells, the conductivity and biocompatibility of anode are hard to achieve simultaneously but significantly influence the power generation performance and the overall cost of microbial fuel cells. Stainless steel felt has a low price and high conductivity, making it a potential anode for the large-scale application of microbial fuel cells. However, its poor biocompatibility limits its application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!