Metal phosphides with easy synthesis, controllable morphology, and high capacity are considered as potential anodes for sodium-ion batteries (SIBs). However, the inherent shortcomings of metal phosphating materials, such as conductivity, kinetics, volume strain, etc are not satisfactory, which hinders their large-scale application. Here, a CoP@carbon nanofibers-composite containing rich Co─N─C heterointerface and phosphorus vacancies grown on carbon cloth (CoP@MEC) is synthesized as SIB anode to accomplish extraordinary capacity and ultra-long cycle life. The hybrid composite nanoreactor effectively impregnates defective CoP as active reaction center while offering Co─N─C layer to buffer the volume expansion during charge-discharge process. These vast active interfaces, favored electrolyte infiltration, and a well-structured ion-electron transport network synergistically improve Na storage and electrode kinetics. By virtue of these superiorities, CoP@MEC binder-free anode delivers superb SIBs performance including a high areal capacity (2.47 mAh cm@0.2 mA cm), high rate capability (0.443 mAh cm@6 mA cm), and long cycling stability (300 cycles without decay), thus holding great promise for inexpensive binder-free anode-based SIBs for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403719DOI Listing

Publication Analysis

Top Keywords

binder-free anode
8
sodium-ion batteries
8
vacancies-induced delocalized
4
delocalized states
4
states cobalt
4
cobalt phosphide
4
phosphide binder-free
4
anode stable
4
stable high-rate
4
high-rate sodium-ion
4

Similar Publications

g-CN modified flower-like CuCoO array on nickel foam without binder for high-performance supercapacitors.

RSC Adv

January 2025

School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China

This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.

View Article and Find Full Text PDF

Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.

View Article and Find Full Text PDF

Hierarchical binder-free NiCoO@CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCoO nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.

View Article and Find Full Text PDF

The demand for compact energy storage devices necessitates the development of high-performance anode materials directly integrated with current collectors, minimizing or eliminating the need for binders or additives. With its layered structure and high theoretical capacity, molybdenum disulfide (MoS) is regarded as a promising anode material for lithium-ion batteries (LIBs). Here, we report chemical vapor deposition (CVD) growth of self-integrated, vertically aligned MoS nanosheets with embedded molybdenum dioxide (MoO) directly on a molybdenum foil and explore its potential as an anode material for LIBs.

View Article and Find Full Text PDF

As the core component of microbial fuel cells, the conductivity and biocompatibility of anode are hard to achieve simultaneously but significantly influence the power generation performance and the overall cost of microbial fuel cells. Stainless steel felt has a low price and high conductivity, making it a potential anode for the large-scale application of microbial fuel cells. However, its poor biocompatibility limits its application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!