AI Article Synopsis

  • The DPC algorithm is effective for sample distribution and noise point identification but lacks adaptability and struggles with high time complexity.
  • This study introduces improvements to DPC using maximum nearest neighbor distance and K-nearest neighbors, and proposes a new method based on delayed spiking neural P systems (DSN P systems).
  • The new DSNP-ANDPC algorithm demonstrates superior performance in most cases when evaluated against various synthetic and real-world datasets.

Article Abstract

Although the density peak clustering (DPC) algorithm can effectively distribute samples and quickly identify noise points, it lacks adaptability and cannot consider the local data structure. In addition, clustering algorithms generally suffer from high time complexity. Prior research suggests that clustering algorithms grounded in P systems can mitigate time complexity concerns. Within the realm of membrane systems (P systems), spiking neural P systems (SN P systems), inspired by biological nervous systems, are third-generation neural networks that possess intricate structures and offer substantial parallelism advantages. Thus, this study first improved the DPC by introducing the maximum nearest neighbor distance and K-nearest neighbors (KNN). Moreover, a method based on delayed spiking neural P systems (DSN P systems) was proposed to improve the performance of the algorithm. Subsequently, the DSNP-ANDPC algorithm was proposed. The effectiveness of DSNP-ANDPC was evaluated through comprehensive evaluations across four synthetic datasets and 10 real-world datasets. The proposed method outperformed the other comparison methods in most cases.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065724500503DOI Listing

Publication Analysis

Top Keywords

spiking neural
12
delayed spiking
8
density peak
8
peak clustering
8
clustering algorithms
8
time complexity
8
systems
8
systems systems
8
neural systems
8
neural
4

Similar Publications

Spiking Neural Networks (SNNs) are at the forefront of computational neuroscience, emulating the nuanced dynamics of biological systems. In the realm of SNN training methods, the conversion from ANNs to SNNs has generated significant interest due to its potential for creating energy-efficient and biologically plausible models. However, existing conversion methods often require long time-steps to ensure that the converted SNNs achieve performance comparable to the original ANNs.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.

View Article and Find Full Text PDF

Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model.

Cogn Neurodyn

December 2025

Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China.

Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial.

View Article and Find Full Text PDF

Emergence of structures in neuronal network activities.

Sci Rep

January 2025

Department of Medicine (Neurology), McMaster University, Hamilton, ON, L8L 2X2, Canada.

Nonlinear responses of individual neurons are both experimentally established and considered fundamental for the functioning of neuronal circuitry. Consequently, one may envisage the collective dynamics of large networks of neurons exhibiting a large repertoire of nonlinear behaviors. However, an ongoing and central challenge in the modeling of neural dynamics involves the trade-off between tractability and biological realism.

View Article and Find Full Text PDF

Recurrent models of orientation selectivity enable robust early-vision processing in mixed-signal neuromorphic hardware.

Nat Commun

January 2025

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, I-16145, Genoa, Italy.

Mixed signal analog/digital neuromorphic circuits represent an ideal medium for reproducing bio-physically realistic dynamics of biological neural systems in real-time. However, similar to their biological counterparts, these circuits have limited resolution and are affected by a high degree of variability. By developing a recurrent spiking neural network model of the retinocortical visual pathway, we show how such noisy and heterogeneous computing substrate can produce linear receptive fields tuned to visual stimuli with specific orientations and spatial frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!