Bioengineered Nerve Conduits and Wraps.

Hand Clin

University of Michigan Comprehensive Hand Center, Michigan Medicine, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109, USA. Electronic address:

Published: August 2024

Peripheral nerve injuries are prevalent and their treatments present significant challenges. Among the various reconstructive options, nerve conduits and wraps are popular choices. Advances in bioengineering and regenerative medicine have led to the development of new biocompatible materials and implant designs that offer the potential for enhanced neural recovery. Cost, nerve injury type, and implant size must be considered when deciding on the ideal reconstructive option.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hcl.2024.03.003DOI Listing

Publication Analysis

Top Keywords

nerve conduits
8
conduits wraps
8
bioengineered nerve
4
wraps peripheral
4
peripheral nerve
4
nerve injuries
4
injuries prevalent
4
prevalent treatments
4
treatments challenges
4
challenges reconstructive
4

Similar Publications

Background: Digital nerve injuries significantly affect hand function and quality of life, necessitating effective reconstruction strategies. Autologous nerve grafting remains the gold standard due to its superior biocompatibility, despite recent advancements in nerve conduits and allogenic grafts. This study aims to propose a novel zone-based strategy for donor nerve selection to improve outcomes in digital nerve reconstruction.

View Article and Find Full Text PDF

An original design of a simple bioreactor was used to fabricate two tubular, 200 cm long BC structures by culturing B-11267 on a molasses medium. In addition, a tubular BC-based biocomposite with improved mechanical properties was obtained by combining cultivation on the molasses medium with in situ chemical modification by polyvinyl alcohol (PVA). Moreover, the present study investigated the BC production by the B-11267 strain on the media with different molasses concentrations under agitated culture conditions.

View Article and Find Full Text PDF

Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration.

Adv Healthc Mater

January 2025

Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.

View Article and Find Full Text PDF

Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.

View Article and Find Full Text PDF

Conductive hydrogel luminal filler for peripheral nerve regeneration.

Biomaterials

January 2025

School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea. Electronic address:

Peripheral nerve injuries impair quality of life due to pain and loss of sensory and motor functions. Current treatments like autografts and nerve guidance conduits (NGCs) have limitations in functional restoration. Luminal fillers can enhance the effectiveness of NGCs by providing beneficial intraneural environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!