Advances in Imaging of Compressive Neuropathies.

Hand Clin

Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St Louis, MO 63110, USA. Electronic address:

Published: August 2024

AI Article Synopsis

  • Ultrasound and magnetic resonance neurography are helpful for diagnosing nerve compression issues, but they struggle with detailed nerve structure and monitoring recovery after surgery.
  • Optical coherence tomography shows potential for better identifying changes in peripheral nerves, but it still needs more research before being used widely in clinics.
  • Future advancements in nerve imaging could allow for better visualization of nerve injuries during surgery and improve tracking of recovery progress.

Article Abstract

Ultrasound and magnetic resonance neurography are useful modalities to aid in the assessment of compressive neuropathies, although they are still limited in their resolution of nerve microstructure and their capacity to monitor postoperative nerve recovery. Optical coherence tomography, a preclinical imaging modality, is promising in its ability to better identify structural and potential physiologic changes to peripheral nerves, but requires additional testing and research prior to widespread clinical implementation. Further advances in nerve imaging may elucidate the ability to visualize the zone of nerve injury intraoperatively, monitor the progression of nerve regeneration, and localize problems during nerve recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hcl.2024.04.003DOI Listing

Publication Analysis

Top Keywords

compressive neuropathies
8
nerve recovery
8
nerve
6
advances imaging
4
imaging compressive
4
neuropathies ultrasound
4
ultrasound magnetic
4
magnetic resonance
4
resonance neurography
4
neurography modalities
4

Similar Publications

Bone and Nerve Response to Sciatic Compression Neuropathy in a Rabbit Model.

J Orthop Res

January 2025

Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, New York, USA.

Compression neuropathy is a prevalent medical condition, including common types such as carpal tunnel syndrome, cubital tunnel syndrome, sciatica, and many others. While the neurological consequences are well understood, the effects on bone properties and the potential downstream impact on fracture risk remain less clear. This study aimed to assess the influence of compressive neuropathy on bone properties using a rabbit model of sciatic nerve compression.

View Article and Find Full Text PDF

Slimmer's paralysis is a peripheral mononeuropathy of the common peroneal (fibular) nerve (CPN/CFN), typically associated with rapid weight loss resulting in loss of subcutaneous fat pad and subsequent neural compression at the fibular head. Here, we describe a young man with a 1-year history of right-sided foot drop, which developed following a rapid intentional weight loss of 11 kg over a period of 15 days. This weight loss was preceded by rapid weight gain over 2 days owing to binge eating.

View Article and Find Full Text PDF

Background Femoral neuropathy is a significant postoperative complication in gynecological surgery that can severely impact patient mobility and quality of life. Among various mechanisms of nerve injury, retractor-induced compression against the pelvic sidewall has been identified as a particularly crucial causative factor. Despite this well-recognized mechanism and its clinical importance, few studies have investigated specific preventive strategies for this iatrogenic complication.

View Article and Find Full Text PDF

Background: Carpal Tunnel Syndrome (CTS) is the most common entrapment neuropathy, characterised by compression of the median nerve at the wrist. Traditional understanding views CTS as a distal compression issue, but recent evidence suggests potential proximal involvement.

Purpose: This study aimed to assess the prevalence of proximal median nerve conduction velocity (CV) slowing in CTS patients and examine its association with CTS severity.

View Article and Find Full Text PDF

Neuropathic pain (NP) and cancer are caused by nerve damage due to cancer or treatments such as chemotherapy, radiotherapy, and surgery, with a prevalence that can reach up to 40%. Causes of neuropathic cancer pain (NCP) include direct nerve invasion or compression by the tumor, as well as neural toxicity associated with treatments. This type of pain is classified into several categories, such as plexopathy, radiculopathy, and peripheral neuropathies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!