An elastomer with in situ generated pure zwitterionic surfaces for fibrosis-resistant implants.

Acta Biomater

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China. Electronic address:

Published: September 2024

Polymeric elastomers are widely utilized in implantable biomedical devices. Nevertheless, the implantation of these elastomers can provoke a robust foreign body response (FBR), leading to the rejection of foreign implants and consequently reducing their effectiveness in vivo. Building effective anti-FBR coatings on those implants remains challenging. Herein, we introduce a coating-free elastomer with superior immunocompatibility. A super-hydrophilic anti-fouling zwitterionic layer can be generated in situ on the surface of the elastomer through a simple chemical trigger. This elastomer can repel the adsorption of proteins, as well as the adhesion of cells, platelets, and diverse microbes. The elastomer elicited negligible inflammatory responses after subcutaneous implantation in rodents for 2 weeks. No apparent fibrotic capsule formation was observed surrounding the elastomer after 6 months in rodents. Continuous subcutaneous insulin infusion (CSII) catheters constructed from the elastomer demonstrated prolonged longevity and performance compared to commercial catheters, indicating its great potential for enhancing and extending the performance of various implantable biomedical devices by effectively attenuating local immune responses. STATEMENT OF SIGNIFICANCE: The foreign body response remains a significant challenge for implants. Complicated coating procedures are usually needed to construct anti-fibrotic coatings on implantable elastomers. Herein, a coating-free elastomer with superior immunocompatibility was achieved using a zwitterionic monomer derivative. A pure zwitterionic layer can be generated on the elastomer surface through a simple chemical trigger. This elastomer significantly reduces protein adsorption, cell and bacterial adhesion, and platelet activation, leading to minimal fibrotic capsule formation even after six months of subcutaneous implantation in rodents. CSII catheters constructed from the PQCBE-H elastomer demonstrated prolonged longevity and performance compared to commercial catheters, highlighting the significant potential of PQCBE-H elastomers for enhancing and extending the performance of various implantable biomedical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.06.047DOI Listing

Publication Analysis

Top Keywords

implantable biomedical
12
biomedical devices
12
elastomer
11
pure zwitterionic
8
foreign body
8
body response
8
coating-free elastomer
8
elastomer superior
8
superior immunocompatibility
8
zwitterionic layer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!