Investigation of europium(III) uptake from highly sulphate solution via cloud point extraction by mono-Schiff base combined with Triton X-100.

Environ Technol

Laboratoire de Chimie et d'Electrochimie des Complexes Métalliques (LCECM), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d'Oran-Mohamed Boudiaf (USTOMB), EL-M'naouer, Oran, Algérie.

Published: July 2024

Owing to its unique physico-chemical properties, europium is one of the most precious and sought-after rare earth elements in the field of high technology. The major economic and commercial importance of such an element, combined with the pollution risks associated with its intensive use, require the development of efficient and eco-compatible recovery and recycling processes. This study focuses on the recovery of europium from highly saline sulphate media (0.5 mol/L) using an environmentally friendly two-phase aqueous extraction technique (known as cloud point extraction (CPE)), using 2((phenylimino)methyl)phenol mono-Schiff base (HPIMP) as the extractant and Triton X-100 as the non-ionic surfactant. The influence of key experimental parameters such as pH, extractant concentration, surfactant concentration and separation temperature on the europium extraction process was systematically studied and optimized. Under optimum experimental conditions, a quasi-quantitative extraction with a minimal volume fraction of surfactant-rich phase ( = 0.025), and concentration factor of ( = 38) was achieved at pH 9.8, in one stage. The analysis of the extraction data revealed that the CPE of europium(III) takes place by a cation exchange-solvation mechanism. The stoichiometry of the complex extracted into the surfactant-rich phase was ascertained to have a composition of 1:2 [Eu:HPIMP] with the slope analysis method. A higher extraction constant was obtained for CPE compared with conventional solvent extraction, confirming the feasibility and usefulness of CPE for Eu(III) recovery. On the other hand, this new HPIMP/Triton X-100 chelating system showed superior extractability for Eu(III) in the CPE process relative to other systems reported previously.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2024.2369275DOI Listing

Publication Analysis

Top Keywords

cloud point
8
extraction
8
point extraction
8
mono-schiff base
8
triton x-100
8
surfactant-rich phase
8
cpe
5
investigation europiumiii
4
europiumiii uptake
4
uptake highly
4

Similar Publications

WildPose: A long-range 3D wildlife motion capture system.

J Exp Biol

January 2025

African Robotics Unit, University of Cape Town, Cape Town, 7700, Western Cape, South Africa.

Understanding and monitoring wildlife behavior is crucial in ecology and biomechanics, yet challenging due to the limitations of current methods. To address this issue, we introduce WildPose, a novel long-range motion capture system specifically tailored for free-ranging wildlife observation. This system combines an electronically controllable zoom-lens camera with a LiDAR to capture both 2D videos and 3D point cloud data, thereby allowing researchers to observe high-fidelity animal morphometrics, behavior and interactions in a completely remote manner.

View Article and Find Full Text PDF

Fast surface reconstruction algorithm with adaptive step size.

PLoS One

January 2025

School of Mathematics and Finance, Hunan University of Humanities, Science and Technology, Loudi, China.

In (Dai et al. 2023), the authors proposed a fast algorithm for surface reconstruction that converges rapidly from point cloud data by alternating Anderson extrapolation with implicit progressive iterative approximation (I-PIA). This algorithm employs a fixed step size during iterations to enhance convergence.

View Article and Find Full Text PDF

Generative design of crystal structures by point cloud representations and diffusion model.

iScience

January 2025

School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.

Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable materials leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar.

View Article and Find Full Text PDF

Can non-human primates extract the linear trend from a noisy scatterplot?

iScience

January 2025

Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.

Recent studies showed that humans, regardless of age, education, and culture, can extract the linear trend of a noisy scatterplot. Although this capacity looks sophisticated, it may simply reflect the extraction of the principal trend of the graph, as if the cloud of dots was processed as an oriented object. To test this idea, we trained Guinea baboons to associate arbitrary shapes with the increasing or decreasing trends of noiseless and noisy scatterplots, while varying the number of points, the noise level, and the regression slope.

View Article and Find Full Text PDF

In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!