Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tuberculosis, caused by Mycobacterium tuberculosis, remains a major public health concern, demanding new antibiotics with innovative therapeutic principles due to the emergence of resistant strains. Benzothiazinones (BTZs) have been developed to address this problem. However, an unprecedented in vivo biotransformation of BTZs to hydride-Meisenheimer complexes has recently been discovered. Herein, we present a study of the influence of electron-withdrawing groups on the propensity of HMC formation in whole cells for a series of C-6-substituted BTZs obtained through reductive fluorocarbonylation as a late-stage functionalization key step. Gibbs free energy of reaction and Mulliken charges and Fukui indices on C-5 at quantum mechanics level were found as good indicators of in vitro HMC formation propensity. These results provide a first blueprint for the evaluation of HMC formation in drug development and set the stage for rational pharmacokinetic optimization of BTZs and similar drug candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227536 | PMC |
http://dx.doi.org/10.1038/s42004-024-01235-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!