A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilizing triethylenetetramine-functionalized MIP-206 for highly efficient removal of Pb(II) from wastewater. | LitMetric

The global concern over heavy metal pollution necessitates urgent measures to safeguard human health and the environment. This study focuses on employing triethylenetetramine (TETA)-functionalized MIP-206-OH (TMIP-206) as an effective adsorbent for removing Pb(II) from wastewater. TMIP-206 was synthesized via a hydrothermal method followed by functionalization with TETA. Kinetic studies demonstrate that lead removal on TMIP-206 conforms to the pseudo-second-order model, indicating an efficient removal process. Experimental results reveal that TMIP-206 aligns with the Langmuir isotherm, exhibiting a maximum removal capacity of 267.15 mg/g for lead ions. The sorption efficiency of TMIP-206 for Pb ions remains stable across six cycles, with a reduction of less than 15%. Optimal adsorption performance is observed at a pH of 6. These findings underscore the potential of TMIP-206 as an alternative for adsorbing Pb(II) from aqueous environments, addressing the global challenge of heavy metal pollution. Future research should explore the scalability and long-term stability of TMIP-206-based adsorbents to enhance their practical applicability in diverse environmental contexts and contribute to broader strategies for mitigating heavy metal contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227518PMC
http://dx.doi.org/10.1038/s41598-024-66358-6DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
efficient removal
8
pbii wastewater
8
metal pollution
8
tmip-206
6
utilizing triethylenetetramine-functionalized
4
triethylenetetramine-functionalized mip-206
4
mip-206 highly
4
highly efficient
4
removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!