Association of lipid-lowering drugs with gut microbiota: A Mendelian randomization study.

J Clin Lipidol

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou). Electronic address:

Published: November 2024

Background: The gut microbiota can be influenced by lipid metabolism. We aimed to evaluate the impact of lipid-lowering medications, such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, Niemann-Pick C1-Like 1 protein (NPC1L1) inhibitors, and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors, on gut microbiota through drug target Mendelian randomization (MR) investigation.

Methods: We used genetic variants that were associated with low-density lipoprotein cholesterol (LDL-C) in genome-wide association studies and located within or near drug target genes as proxies for lipid-lowering drug exposure. In addition, expression trait loci in drug target genes were used as complementary genetic tools. We used effect estimates calculated using inverse variance weighted MR (IVW-MR) and summary data-based MR (SMR). Multiple sensitivity analyses were performed.

Results: Genetic proxies for lipid-lowering drugs broadly affected the abundance of gut microbiota. High expression of NPC1L1 was significantly associated with an increase in the genus Eggerthella (β = 1.357, SE = 0.337, P = 5.615 × 10). An HMGCR-mediated increase in LDL-C was significantly associated with the order Pasteurellales (β = 0.489, SE = 0.123, P = 6.955 × 10) and the genus Haemophilus (β = 0.491, SE = 0.125, P = 8.379 × 10), whereas a PCSK9-mediated increase in LDL-C was associated with the genus Terrisporobacter (β = 0.666, SE = 0.127, P = 1.649 × 10). No pleiotropy was detected.

Conclusions: This drug target MR highlighted the potential interventional effects of lipid-lowering drugs on the gut microbiota and separately revealed the possible effects of different types of lipid-lowering drugs on specific gut microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacl.2024.05.004DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
lipid-lowering drugs
16
drug target
16
drugs gut
8
mendelian randomization
8
target genes
8
proxies lipid-lowering
8
increase ldl-c
8
ldl-c associated
8
gut
6

Similar Publications

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Therapeutic Potential of Vanillic Acid in Ulcerative Colitis Through Microbiota and Macrophage Modulation.

Mol Nutr Food Res

January 2025

2nd Abdominal Surgery Department, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, People's Republic of China.

This study investigated the protective effects of the dietary polyphenol vanillic acid (VA) on dextran sulfate sodium-induced acute ulcerative colitis (UC) in mice, focusing on its impact on the gut microbiota and inflammatory responses. VA was supplemented following dextran sulfate sodium administration, and key indicators, including body weight, disease activity index, colon length, spleen index, and inflammatory markers, were assessed. VA supplementation significantly alleviated UC symptoms, preserved intestinal barrier integrity, and reduced pro-inflammatory cytokine levels.

View Article and Find Full Text PDF

Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control.

View Article and Find Full Text PDF

Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!