Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: We explored the feasibility of using total tumor apparent diffusion coefficient (ttADC) histogram parameters to predict high-risk cytogenetic abnormalities (HRCA) in patients with multiple myeloma (MM) and compared the performance of an image prediction model based on these parameters with that of a combined prediction model based on these parameters and clinical indicators.
Methods: We retrospectively analyzed the parameters of the ttADC histogram based on whole-body diffusion-weighted images(WB-DWI) and clinical indicators in 92 patients with MM. The patients were divided into HRCA and non-HRCA groups according to the results of the fluorescence in situ hybridization. Logistic regression analysis was used to construct the image prediction and combined prediction models. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to evaluate the performance of the models to identify HRCA. The DeLong test was used to compare the AUC differences of each prediction model.
Results: Logistic regression analysis results revealed that the ttADC histogram parameter, ttADC entropy < 7.959 (OR: 39.167; 95% confidence interval [CI]: 3.891-394.208; P < 0.05), was an independent risk factor for HRCA. The image prediction model consisted of ttADC entropy and ttADC SD. The combined prediction model included ttADC entropy along with patient clinical indicators such as biological sex and M protein percentage. The AUCs of the image prediction and combined prediction models were 0.739 and 0.811, respectively (P < .05). The image prediction model showed a sensitivity of 73.9% and a specificity of 68.1%. The combined prediction model showed 82.6% sensitivity and 72.5% specificity.
Conclusions: Using ttADC histogram parameters based on WB-DWI images to predict HRCA in patients with MM is feasible, and combining ttADC parameters with clinical indicators can achieve better predictive performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2024.04.048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!